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Abstract

We analyze the influence of finite ion size effects in the response
of a salt-free concentrated suspension of spherical particles to
static and oscillating electric fields. Ideal salt-free suspensions
are just composed of charged colloidal particles and the added
counterions released by the particles to the solution that counter-
balance their surface charge. To get closer to experimental con-
ditions we also consider realistic salt-free suspensions. These re-
alistic suspensions include water dissociation ions and those gen-
erated by atmospheric carbon dioxide contamination, in addi-
tion to the added counterions. We study the static and dynamic
electrophoretic mobility of the particles and the conductivity
and dielectric response of the suspension, as well as the equilib-
rium electric double layer. Some of the theoretical predictions
are compared with preliminary experimental results. We find
that the finite ion size significantly modifies the ionic condensa-
tion region near the particle surface for moderate to high parti-
cle charges. This produces an increment of the electrophoretic
mobility and an enhancement of the Maxwell-Wagner-O’Konski
process associated with the counterions condensation layer, that
also yields an increment of the dynamic mobility for such fre-
quencies. All these effects increase with ion size and particle
charge. This work shows the importance of including ion size
effects in any extension attempting to improve standard elec-
trokinetic models.
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Introduction

In the last years, there has been a renewed interest in electrophoresis. This
is in part due to recent advances in nanoscience, which make possible the
separation of macromolecules by size or charge. Suspended DNA or proteins
are driven and separated by applying dc or ac electric fields [1–3]. Another
main application in the field of nanoscience is the use of gold nanoparti-
cles for drug delivery or cancer cell detection [4, 5]. Measurements of the
electrophoretic mobility have been found to be useful to characterize the sur-
face functionalization of these gold nanoparticles [6]. Usually particles are
charged and suspended together with microions and a structure of electric
double layer (EDL) appears around the particle [7–9]. The electrophoretic
mobility of a suspended particle is not only dependent on the particle charge
or the viscosity of the medium, but also on the configuration of the EDL.

Most of the theoretical EDL models are based on the classical Poisson-
Boltzmann equation, a mean field approach that takes into account point-
like ions in solution. This theory breaks down when the crowding of ions
becomes significant, and steric repulsion and correlations potentially become
important. Some authors have shown that the consideration of finite ion
size effects allows for the crowding of ions near the particle surface [10]. This
redistribution of ions modifies the EDL around the particle and consequently
its electrophoretic mobility when an external electric field is applied [11–14].

We can find in the literature different studies dealing with ion size ef-
fects. Some of them concern microscopic descriptions of ion-ion correla-
tions [15–30]. These approaches are mainly restricted to equilibrium condi-
tions, but are able to predict important phenomena like overcharging [31,32].
Other studies are based on macroscopic descriptions considering average in-
teractions by mean field approximations [10–14, 33–55]. In many of these
works, the finite ion size is commonly included by modifying the activity
coefficient of the ions in the electrochemical potential or by incorporating
entropic contributions related to the excluded volume of the ions. The
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2 INTRODUCTION

macroscopic approaches have been found to work appreciably well with
monovalent electrolytes for high particle charges and/or large ionic sizes
when they have been compared with some simulation results [15].

Most works in electrokinetics concern suspensions with low particle con-
centration, but nowadays it is the concentrated regime that deserves more
attention because of its practical applications [56]. These systems are diffi-
cult to understand due to the inherent complexity associated with the in-
creasing particle-particle electrohydrodynamic interactions as particle con-
centration grows [57,58]. On the other hand, systems with low salt concen-
tration show a lower screening of the repulsive electrostatic particle-particle
interactions, which favors the generation of colloidal crystals or glasses [59].
Suspensions just composed of charged particles and their ionic counter-
charges (the so-called added counterions) in the liquid medium are termed
ideal salt-free suspensions, or just salt-free suspensions. The interest in
these systems has increased in recent years from both experimental and
theoretical points of view [14,53–55,60–76].

The aim of this thesis is to analyze the influence of finite ion size effects
in the response of a salt-free concentrated suspension to static and oscillat-
ing electric fields. We will study specially the static and the dynamic elec-
trophoretic mobility of the particles, and the conductivity and the dielectric
response of the suspension, as well as the equilibrium EDL [14,53,54]. To get
closer to experimental conditions we will also discuss the equilibrium EDL in
realistic salt-free concentrated suspensions. [55]. These realistic suspensions
include water dissociation ions and those generated by atmospheric carbon
dioxide contamination, in addition to the added counterions released by the
particles to the solution. To test the validity of these models, some calcula-
tions are compared with preliminary experimental results of the static and
dynamic electrophoretic mobility of charged colloidal particles.

This thesis is structured as follows. In Chapter 1 we present an intro-
duction about soft condensed matter, focusing on colloidal suspensions. We
discuss the use of a spherical cell approach to deal with particle-particle
interactions and review some previous works dealing with ion size effects.
We describe the electrokinetic model to account for ion size effects in ideal
salt-free concentrated suspensions in Chapter 2. We also give details of the
resolution method of the electrokinetic equations and define the quantities
we calculate. The results of the numerical calculations are analyzed upon
changing particle surface charge density, particle volume fraction, and size
of the counterions. In order to show the realm of the finite ion size ef-
fect in ideal salt-free suspensions, the results are compared with standard
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predictions for point-like ions. In Chapter 3 we present a model for the
equilibrium EDL in realistic salt-free suspensions including ion size effects.
We solve the model numerically and compare the results with those for ideal
salt-free suspensions and with point-like calculations. We also show some
preliminary experimental results to compare theoretical predictions of the
models described before. Conclusions are presented in Chapter 4.
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Chapter 1

Colloidal systems

This chapter presents an introduction to colloidal suspensions. In particu-
lar, we pay our attention to salt-free concentrated suspensions of charged
colloids. We discuss the use of a spherical cell approach to deal with particle-
particle interactions. Classical works based on mean-field theories have usu-
ally neglected the excluded volume of the ions. We conclude this chapter
reviewing existing works that account for ion size effects, which are the
cornerstone of this thesis.

1.1 Colloidal suspensions

“Take a little fine dust, pour it into a glass of water, mix with care, and
you get a colloid. That’s all. A colloid, in its simplest form, is just a
suspension of solid particles in a liquid. Actually, you don’t even need a
liquid. Candle smoke coiling and spreading in air is a colloid too, but one
where the particles are suspended in a gas” [77].

Soft matter is a quite recent branch of condensed matter physics [78].
One of the particularities of soft matter systems is that many of their
properties cannot be predicted directly from their atomic or molecular con-
stituents. Usually, the microscopic components join into larger structures,
each of them with a precise identity and function. The properties of these
mesoscopic structures may determine the macroscopic behavior of the mate-
rial. In his Nobel Lecture, de Gennes points out that the two major features
of soft matter systems are complexity and flexibility. Examples of this kind
of systems are colloids, aerosols, polymers, emulsions, gels, liquid crystals,
granular matter, membranes, biopolymers, biological machines, etc.

This thesis is focused on colloids which, in spite of being one of the
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6 CHAPTER 1. COLLOIDAL SYSTEMS

most simple examples of soft matter systems, have an enormous practical
importance. Colloidal suspensions consist in a dispersion of particles in a
fluid, that can be either a liquid or a gas (in this case we call them aerosols).
The colloidal particles can be made of any kind of material: solid, liquid
immiscible with the solvent (emulsions), or gas (foams); have any shape,
and be flexible or rigid (like a polymer coil or a vesicle). The characteristic
that distinguishes colloids from other particles is their size. Their volume
must be quite large in comparison with the solvent molecules. In the lower
limit, particles with size of a couple of nanometers, like a micelle, can be
considered as colloids. For the upper limit, we just ask that they are not so
large that their settling under their own weight does not overwhelm their
Brownian motion (which differentiate them from a granular material) [77].

The properties of colloidal suspensions are mostly dominated by surface
and interfacial effects. To understand them we may consider the following
example. The surface of a cubic block with a side of 0.1 cm is S = 0.0006
m2. Let’s divide it to get tiny blocks with 0.1 µm side. We will obtain 1015

blocks with a huge total surface area S = 60 m2. The larger the contact
surface, the faster that materials and energy can be exchanged with the
surroundings. This feature makes possible, for example, the use of gold
nanoparticles for drug delivery or cancer cell detection [4, 5]

Electric double layer

It is an experimental fact that colloidal particles get an electric surface
charge when dispersed in a polar solvent, in particular, in an aqueous elec-
trolyte solution. Different mechanisms explain the origin of this charge
[8, 9, 79, 80]. The electroneutrality condition impose that the liquid adja-
cent to the particle must have a net electric charge, opposite to that on the
particle surface. Clearly, the charged surface will influence the distribution
of the nearby ions in the electrolyte solution. Ions of opposite charge to
that of the surface, called counterions, will be attracted toward the surface,
while ions of like charge, called coions, will be repelled from the surface. As
a consequence of the attraction and repulsion between the ions in the elec-
trolyte solution and the charged surface, there will be a non-uniform ionic
distribution normal to the surface. Such a redistribution of the free ions
in solution gives rise to the so-called electric double layer (EDL). In simple
terms, its name came about because of the separation of charge between the
surface and the electrolyte solution. One layer is the charge on the surface,
and the other, a “layer” of ions in the vicinity of the surface.

The concept of EDL was introduced by Helmholtz in 1879. His dou-
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ble layer model was very primitive and consisted of a charged flat surface
and a spatial countercharge with opposite sign as compared to that of the
surface, forming a “molecular condenser”. However, thermal motion causes
the counterions to be spread out in space, forming a diffuse double layer.
In the early 1900s, Gouy and Chapman developed independently a theory
that accounted for such diffuse double layer [81, 82]. In their model, the
charged surface is composed of a layer of charges and has a surface poten-
tial Ψ0

s. The ions in solution are considered as point charges immersed in
a continuous dielectric medium. The repulsion/attraction coupled with the
random thermal Brownian motion of the ions within the dielectric medium
gives rise to a diffuse electrical layer [9].

We have mentioned that the presence of a charged surface gives rise
to a spatial distribution of the ions normal to the surface. In the equilib-
rium, the ionic distribution is related to the equilibrium electric potential,
Ψ0, through the Boltzmann distribution. In the present context, a dilute
electrolyte solution described within a mean-field theory, the ionic number
concentration of the ith ionic species is

n0
i = ni∞ exp

(
−zieΨ0

kBT

)
(1.1)

where ni∞ is the ionic number concentration at the neutral state in which
Ψ0 = 0, called bulk, zi the ionic valency, e the elementary electric charge,
kB the Boltzmann constant and T the absolute temperature.

In an electrolyte solution, the continuous phase is water, which is con-
sidered a dielectric medium, and the free charges are the ions contained in
the electrolyte solution. Therefore, Poisson’s equation is the appropriate
equation to analyze the electric diffuse double layers where the dielectric
permittivity of water, εrs, is assumed constant. The Poisson equation is
given by

εrsε0∇2Ψ0 = −ρ0
f = −

N∑
i=1

zien
0
i (1.2)

where ε0 is the permittivity of the vacuum and ρ0
f is the space charge density

of the mobile (“free”) ions, that can be written in terms of the number
concentrations of the N ionic species in the electrolyte solution. Combining
Eq. 1.1 and 1.2 we obtain the well-known Poisson-Boltzmann equation.

εrsε0∇2Ψ0 = −
N∑
i=1

zieni∞ exp

(
−zieΨ0

kBT

)
(1.3)
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The Poisson-Boltzmann equation defines the electric potential distribu-
tion in the diffuse ionic layer adjacent to a charged surface subject to appro-
priate boundary conditions. In the case of planar EDL’s with a symmetric
electrolyte, it is possible to obtain an analytical solution for Ψ0 without any
further approximations. Considering the boundary conditions Ψ0 = Ψ0

s at
the particle surface, x = 0, and Ψ0 = 0 at the bulk, x→∞, we obtain

Ψ0 = 2 ln

[
1 + exp(−κx)tanh(Ψ0

s/4)

1− exp(−κx)tanh(Ψ0
s/4)

]
(1.4)

This solution is known as Gouy-Chapman theory. In this Equation κ−1

is the Debye length, which is defined as

κ−1 =

(
εrsε0kBT∑N
i=1 e

2z2
i ni∞

)1/2

(1.5)

The Debye length is a measure of the EDL thickness, and is a property
of the electrolyte solution. It should be noted that this parameter contains
no information about properties of the charged surface. Although it is
normally referred to as the thickness of the EDL, the actual thickness of a
double layer extends well beyond κ−1. Typically, the Debye length would
represent a characteristic distance from the charged surface to a point where
the electric potential decays to approximately 33% of the surface potential,
when the latter is rather low.

The Gouy-Chapman treatment of the diffuse EDL assumes that the ions
are point charges and that the inner boundary of the EDL is on the particle
surface. The location of the outer boundary is characterized by the inverse
Debye length. The present theory has some difficulties at small κx values
when Ψ0

s is large.
In 1924 Stern proposed a modification of the Gouy-Chapman model [83].

The structure of Stern’s EDL can be very complex, not fully resolved in
many instances, and it may contain three or more layers extending over
varying distances from the solid surface, Fig. 1.1 [8, 9, 79].

Ions capable of undergoing specific adsorption might be located close to
the particle surface. Their distance to the surface will be of the order of
an ionic radius because it is assumed that they have lost their hydration
shell, at least in the direction of the particle surface. This plane of ions
is called inner Helmholtz plane (IHP) and is located at a distance βi from
the particle surface. The consideration of finite size ions makes the region
between the particle surface and the IHP to be free of charge. Ions placed in
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this region will have not only electrostatic interactions with the surface. In
fact they often overcome electric repulsions, and are capable, for instance,
of increasing the positive charge of an already positive surface. It is usual
to say that the missing interactions are of a chemical or specific nature [79].

At a larger distance from the surface βd and beyond, we find ions sub-
jected only to electrostatic interactions with the surface. They are also
exposed to collisions with solvent molecules, and therefore they are dis-
tributed over a certain distance to the particle surface. The plane located
at βd is called outer Helmholtz plane (OHP) and identifies the beginning of
the diffuse layer. The region between the particle surface and the OHP is
termed Stern layer. The electric potential changes from the surface poten-
tial, Ψ0

s, to Ψ0
d within the Stern layer and it decays to zero far away from

the Stern plane, Fig. 1.1.

The ions and liquid closer to the particle surface, the so-called stagnant
layer, can be considered immobile. On the contrary, both ions and liquid
outside it can be moved by an external field, and therefore a relative motion
between the phases in contact will occur. The exact location of the boundary
between the mobile and immobile phases, the so-called slipping or shear
plane, is a matter of investigation [8,79]. We have shown it in Fig. 1.1 at a

Di↵use layer

Stern layer

�i �d �⇣

Neutral
electrolyte

�1

⇣
 0

d

 0
i

 0
s

IHP

OHP

Figure 1.1: Schematic representation of potential distribution at a nega-
tively charged interface showing the Debye length, κ−1, and the overall
extent of the EDL within the Stern model.
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distance βζ from the surface. The potential at the shear plane is referred to
as the electrokinetic potential, more commonly known as the zeta potential,
ζ.

Electrokinetic phenomena

The term electrokinetics is associated with the relative motion between two
charged phases. Electrokinetic phenomena take place when one tries to
shear off the mobile part of the EDL. Then, as the charged particle tends to
move in the appropriate direction, the ions in the mobile part of the EDL
suffer a net migration in the opposite direction, dragging solvent with them,
thereby causing the movement of the solvent. In the same way, an electric
field is created if the charged surface and the diffuse part of the double layer
are made to move relative to each other [9].

The different electrokinetic phenomena can be distinguished by the mo-
bile/immobile phases, the nature of the applied field, and the quantity that
must be experimentally determined. In this thesis we are specially interested
in three of them [79]:

• Electrophoresis. It is the translation of a colloidal particle under the
action of an externally applied field constant in time and position inde-
pendent. For not very large applied fields, there is a linear relationship
between the steady electrophoretic velocity, ve, and the applied field,
〈E〉: ve = µ〈E〉; where µ is the quantity of interest, known as elec-
trophoretic mobility. Electrophoresis is usually employed in measuring
the surface potential of a charged particle.

• Dielectric dispersion. It is the change with the frequency of an ap-
plied ac field of the dielectric permittivity of a suspension of colloidal
particles. The phenomenon is also dependent on the concentration
of particles, their zeta potential, and the ionic composition of the
medium and appears to be very sensitive to most of these quantities.
The analysis of the permittivity by dielectric spectroscopy provides
rich information on the dynamics of the EDL because such technique
is very sensitive to the particle-solution interface. The dielectric spec-
troscopy can also be used to study and characterize cell cultures [84,85]
and DNA molecules in saline solutions [86].

• Electroacoustic phenomena. These electrokinetic phenomena have re-
cently gained interest, both experimentally and theoretically. In the
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ESA (electrokinetic sonic amplitude) technique, an alternating elec-
tric field is applied to the suspension and the sound wave produced
in the system is detected and analyzed. The colloid vibration poten-
tial (CVP) or colloid vibration current (CVI) is the reciprocal of the
former: a mechanic (ultrasonic) wave is forced to propagate in the
system, and the resulting alternating potential difference (or current)
is measured.

Salt-free and concentrated suspensions

In the previous discussion we have considered dilute colloidal suspensions,
and therefore we have not taken into account the effect of particle-particle
interactions. We define the particle volume fraction, φ, as the ratio be-
tween the volume occupied by the particles and the volume of the whole
suspension. Regarding this definition, dilute suspensions are characterized
for taking low φ values. On the contrary, in concentrated suspensions, where
φ takes high values, the volume occupied by the particles in the suspension
is a considerable part of it, and the interactions between particles cannot
be neglected [57,58]. Due to this reason, the study of concentrated suspen-
sions is a less explored field in spite of their technological and fundamental
importance. For example, a large number of suspensions of industrial in-
terest (like paints, ceramics, drugs or soils) are concentrated [56]. Besides,
electrokinetic effects are also present in situations where non homogeneous
electric fields allow the separation, mixing, or concentration of dispersed
particles [87,88].

These applications require techniques for the characterization of the
properties of the suspension, like stability, particle size distribution or sur-
face charge. The use of light scattering techniques has limited applicability
in concentrated or turbid suspensions. For this reason, methods based on
the determination of some electrokinetic properties to perform such char-
acterization, like electroacoustic techniques [89] or the determination of the
low frequency permittivity of the suspension [90], are in demand.

The discussion presented before has been also referred to electrolyte
solutions. Systems with low salt concentration show a lower screening of
the repulsive electrostatic particle-particle interactions, which, for exam-
ple, favors the generation of colloidal crystals or glasses [59]. Suspensions
just composed of charged particles and their ionic countercharges (the so-
called added counterions) in the liquid medium are termed ideal salt-free
suspensions, or just salt-free suspensions [64, 66, 67]. Therefore, in salt-free
suspensions the ionic species in the dispersion medium come solely from the
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dissociation of the functional groups of the dispersed phase. An aqueous
dispersion can be treated as a salt-free dispersion when the concentrations
of hydrogen ions and hydroxide ions are much lower than the concentration
of the added counterions. To get closer to experimental conditions, Car-
rique et al. have proposed a theoretical model to deal with realistic salt-free
concentrated suspensions [70–74]. These realistic suspensions include water
dissociation ions and those generated by atmospheric carbon dioxide con-
tamination, in addition to the added counterions released by the particles
to the solution.

It should be noted that only added counterions are present in the EDL.
As a result, the Debye length is no longer a parameter that can be adjusted
experimentally by changing the concentration of added electrolyte. Instead,
the thickness of the EDL in salt-free suspensions can be modified only by
changing the particle volume fraction. Also, an interesting phenomenon in
this kind of suspensions was reported by Manning, Imai and Oosawa, among
others [91–93]. They concluded that above a critical particle surface charge
value, a condensate of counterions is formed around the particle. The inter-
est in these systems has increased in recent years from both experimental
and theoretical points of view [14,53–55,60–76].

1.2 Spherical cell approach

There are many obstacles in formulating and solving mathematical prob-
lems intended for obtaining spatial distributions of physical quantities inside
a multi-particle system, such as concentrated suspensions. Fortunately, it
is not necessary to know all the details of these distributions. Typical ex-
periments with multi-particle systems deal with measuring the responses of
the entire system under given external influences. Such responses can be
addressed by averaging the actual distributions of physical quantities over
the multi-particle system volume.

We use the concept of macroscopically homogeneous medium to simplify
the procedure of obtaining the response of the system to external influences.
A macroscopically homogeneous medium is characterized by a set of equiv-
alent parameters called kinetic coefficients. Such coefficients are calculated
by averaging the local distributions of physical quantities over a represen-
tative part, the cell, of the disperse system, not over the entire volume.

Two conditions are required to consider a multi-particle system as macro-
scopically homogeneous medium: (i) the dimensions of the representative
cell should be negligible in comparison with the dimensions of the whole sys-
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a

b
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R

Figure 1.2: Spherical cell model including the distance of closest approach
of the counterions to the particle surface.

tem; and (ii) the average over the representative cell gives rise to the same
set of kinetic coefficients irrespective of the position of the representative
cell. When the second condition is satisfied, an average over the disperse
system volume is always equal to the average over the representative cell
volume.

The spherical cell approach is an approximate method for addressing
macroscopically homogeneous and isotropic media consisting of particles
dispersed in a continuous phase. In this approach, represented in Fig. 1.2,
each spherical particle of radius a is surrounded by a concentric shell of the
liquid medium, having an outer radius b such that the particle/cell volume
ratio in the cell is equal to the particle volume fraction throughout the entire
suspension, that is

φ =
(a
b

)3
(1.6)

The above assumption enables one to predict the kinetic coefficients
by averaging electrical, hydrodynamic and ion concentration fields over the
spherical cell volume. Consequently, the boundary value problem, which
should be solved for describing these fields, is formulated inside the spherical
cell.

After the pioneering papers of Levine and Neale [94] and Shilov, Zharkikh
and Borkovskaya [95], a large number of theoretical studies were concerned
with applying the spherical cell approach for describing electrokinetic phe-
nomena. Among others, it is worthwhile to mention the works in salt-free
systems of Ohshima (static and dynamic electrophoretic mobility) [64, 65],
Lee et al. (electrophoresis) [66,76] and Carrique et al. (dc and ac electroki-
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netics in salt-free and realistic salt-free concentrated suspensions) [67–74].
The spherical cell approach has been successfully tested against experimen-
tal electrokinetic results in concentrated suspensions [96–99]. It has been
also recently shown that, up to moderately strong electrostatic couplings,
the spherical cell approach proves accurate for the prediction of osmotic
pressures of deionised suspensions in agreement with Monte Carlo simula-
tions and renormalized-effective interaction approaches [100].

An interested reader can find more details about the spherical cell ap-
proach and its history in the review of Zholkovskij et al. [101].

1.3 Ion size effects

All the previous theories, that describe point-like ions in a mean-field ap-
proximation, break down when the crowding of ions becomes significant,
and steric repulsion and correlations potentially become important. We
have seen that long ago Stern postulated a static compact monolayer of
solvated ions located at the particle surface to account for the obvious ionic
excess in the Poisson-Boltzmann theory [83]. A lack of this theory is that
the size of the ions should be considered not only at the monolayer. Be-
sides, a dynamical model is required for a “condensed layer” that is built
and destroyed as the applied field alternates. Such condensed layer should
be described by the same ion transport equations used for the diffuse part
of the EDL.

We can find in the literature different attempts to overcome these limita-
tions. Some of them concern microscopic descriptions of ion-ion correlations
and the finite size of the ions [15–22]. There are also some works dealing
with the response of colloidal suspensions under external electric fields using
microscopic descriptions [23–30]. In spite of their advantages in compari-
son with mean-field approaches, time-dependent problems within this level
of description require much more computational time and are restricted to
simple configurations regarding particle charge and volume fraction.

In this work we focus in macroscopic descriptions considering aver-
age interactions by mean-field approximations. Many “modified Poisson-
Boltzmann” theories have been proposed to describe equilibrium ion profiles
near a charged wall [33–37]. An extensive review of these theories can be
found in Ref. [10]. The first complete modified Poisson-Boltzmann model
with steric effects in the electrolyte phase was proposed by Bikerman in
1942 [33]. Bikerman applied continuum volume constraints to the Poisson-
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Boltzmann theory, which corresponds to an excess chemical potential

µ0,ex
i = −kBT ln(1− Φ) (1.7)

associated with the entropy of the solvent, where Φ = a3
∑

i ci is the local
volume fraction of solvated ions on the lattice [102]. For a symmetric binary
electrolyte, the ionic concentration within the Bikerman model is

n0
i =

ni∞ exp
(
−zieΨ0

kBT

)
1 + 2ν sinh2(zieΨ0/2kBT )

(1.8)

where ν = 2a3ni∞ is the bulk volume fraction of solvated ions. Due to the
underlying lattice-gas model for excluded volume, the ion profiles effectively
obey Fermi-Dirac statistics. Classical Boltzmann statistics and the Gouy-
Chapman model for Poisson-Boltzmann are recovered in the limit of point-
like ions, ν = 0.

Bikerman’s modified Poisson-Boltzmann equation has been indepen-
dently reformulated by many authors [38–44]. Most of these authors de-
rived the same model starting from the bulk statistical mechanics of ions
and solvent molecules on a cubic lattice of spacing in the continuum limit
where the concentration profiles vary slowly over the lattice.

Several authors have studied non-equilibrium properties departing from
Bikerman’s model. This is the case of Kilic, Bazant and Adjari with di-
lute electrolytes in large applied voltages [10, 45, 46] or Khair and Squires
in electrophoresis of colloids [12]. In a series of papers, López-Garćıa and
coworkers [11,47–49] have studied the electrokinetics of dilute colloidal sus-
pensions in electrolyte solutions including ion size effects. In a similar way
as Stern, they considered that ions cannot approach to the particle surface
as much as their hydrated ionic radius, although no chemical adsorption
is taken into account in this model. They have found that ion size effects
should be considered in all magnitudes studied, specially for moderate to
high particles charges and electrolyte concentrations. In the response of the
suspension under oscillating electric fields, this effect is also significant for
weekly charged partices.

Their mean-field model has been compared with some Monte Carlo sim-
ulations for general ionic conditions [15]. While the latter has predicted
charge inversion [31, 32] for the case of multivalent ions, the mean-field
model has been unable to show such behaviours whatever the valency of the
ions may be. Another theoretical approximation, the HNC-MSA [21, 27],
has also found charge inversion for such conditions. It was concluded that
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the neglecting of ion-ion correlations in the mean-field model was its main
drawback. Very recently, Lopez-Garćıa et al. [13, 50] presented a modified
standard electrokinetic model for diluted suspensions which takes into ac-
count the finite ion size and considers a minimum approach distance of ions
to the particle surface not necessarily equal to their effective radius in the
bulk solution. They show that this model is able to predict overcharging
for high electrolyte concentration and counterions valency. We think that
this is a very important result because to our knowledge this is the first
time that a phenomenological theory based on macroscopic descriptions is
able to predict this phenomenon. In two recent contributions, the same au-
thors have considered the finite ion size by modelling the aqueous electrolyte
solution as a suspension of polarizable insulating spheres in water [51,52].

In this thesis we study the electrokinetics of salt-free concentrated sus-
pensions of colloidal particles including ion size effects. We use a spherical
cell approach to deal with particle-particle interactions within a mean-field
model. Following the work of Borukhov et al. [38], we consider the finite
size of the counterions using a phenomenological free energy derivation. The
result for the equilibrium is a modified Poisson-Boltzmann equation similar
to Bikerman’s one. Finite size counterions in our model are depicted in Fig.
1.2, i.e. they are treated like spheres of radius R with a point charge at
their center that cannot approach to the particle surface as much as their
hydrated ionic radius [11]. This definition makes the region between the
particle surface and one ionic radius to be free of charge. Ion size effects
are also considered in the fundamental electrokinetic equations [7, 103] to
predict non-equilibrium properties of this system.



Chapter 2

Ideal salt-free suspensions

Having presented the system we are concerned, we develop a theoretical
model to consider finite size counterions in ideal salt-free concentrated sus-
pensions. We analyze the equilibrium response of the system as well as
the response to static and alternating external electric fields. We show the
importance of our corrections by calculating the electrophoretic mobility of
the particles and conductivity and the dielectric response of the suspension,
and by comparing these results with the classical predictions for point-like
counterions.

2.1 Model

2.1.1 Electrokinetic equations

Let us consider a spherical charged particle of radius a, surface charge den-
sity σ, mass density ρp and relative permittivity εrp immersed in an ideal
salt-free medium of relative permittivity εrs, mass density ρs and viscosity
η, with only the presence of the added counterions of valency zc and drag
coefficient λc. We consider finite size counterions as spheres of radius R with
a point charge at their center. By applying to the system an oscillating elec-
tric field E e−iωt of angular frequency ω, the particle moves with a velocity
vee
−iωt, the dynamic electrophoretic velocity. The axes of the spherical co-

ordinate system (r, θ, ϕ) are fixed at the center of the particle, with the
polar axis (θ = 0) parallel to the electric field. The solution of the problem
at time t requires the knowledge, at every point r in the system, of the
electric potential, Ψ(r, t), the number density of counterions, nc(r, t), their
drift velocity, vc(r, t), the fluid velocity, v(r, t), and the pressure, P (r, t).

17
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The fundamental electrokinetic equations connecting them are [7, 103]: the
Poisson equation for the relationship between the electric potential and the
charge density,

∇2Ψ(r, t) = − zce

ε0εrs
nc(r, t) (2.1)

the Navier-Stokes equation for the fluid velocity for low Reynolds number
in the presence of an electrical body force,

η∇2v(r, t)−∇P (r, t)− zcenc(r, t)∇Ψ(r, t) = ρs
∂

∂t
[v(r, t) + ve e−iωt] (2.2)

the continuity equation for the counterions that implies the conservation of
the number of counterions in the system,

∇ · [nc(r, t)vc(r, t)] = − ∂

∂t
[nc(r, t)] (2.3)

and the Nernst-Planck equation for the flow of the counterions,

nc(r, t)vc(r, t) = nc(r, t)v(r, t)− 1

λc
nc(r, t)∇µc(r, t) (2.4)

where µc(r, t) is the electrochemical potential of the counterions. We also
take into account the continuity equation for an incompressible fluid flow,

∇ · v(r, t) = 0 (2.5)

In these equations, ε0 is the vacuum permittivity and e is the elemen-
tary electric charge. The drag coefficient λc is related to the limiting ionic
conductance Λ0

c or the diffusion coefficient Dc by

λc =
NAe

2|zc|
Λ0
c

=
kBT

Dc
(2.6)

where NA is Avogadro’s number, kB is Boltzmann’s constant, and T is the
absolute temperature.

As we are interested in studying the linear response of the system to an
electric field, we apply a perturbation scheme. Thus, each quantity X is
written as the sum of its equilibrium value, X0, plus a perturbation term,
δX, linearly dependent with the field multiplied by the term e−iωt, that



2.1. MODEL 19

represents the time dependent sinusoidal response of the stationary state:

Ψ(r, t) = Ψ0(r) + δΨ(r)e−iωt

nc(r, t) = n0
c(r) + δnc(r)e−iωt

µc(r, t) = µ0
c + δµc(r)e−iωt

P (r, t) = P 0(r) + P (r)e−iωt

v(r, t) = v(r)e−iωt

vc(r, t) = vc(r)e−iωt (2.7)

We introduce the finite size of the counterions by adding a new term, the
entropy of the solvent molecules, in the free energy of the suspension [38,53].
Within a mean-field approximation, the total free energy of the system,
F = U − TS, can be written in terms of the equilibrium electric potential
Ψ0(r) and the counterions concentration n0

c(r). The configurational internal
energy contribution U is

U =

∫
dr

[
− ε0εrs

2
|∇Ψ0(r)|2 + zcen

0
c(r)Ψ0(r)− µ0

cn
0
c(r)

]
(2.8)

The first term is the self-energy of the electric field, the second term is
the electrostatic energy of the counterions in the electrostatic mean field,
and the last term couples the system to a bulk reservoir.

The entropic contribution −TS is

− TS = kBTn
max
c

∫
dr

[
n0
c(r)

nmaxc

ln

(
n0
c(r)

nmaxc

)
+

(
1− n0

c(r)

nmaxc

)
ln

(
1− n0

c(r)

nmaxc

)]
(2.9)

being nmaxc the maximum possible concentration of counterions due to the
excluded volume effect, defined as nmaxc = V −1, where V is the average
volume occupied by an ion in the solution. The first term inside the integral
is the entropy of the counterions, and the second one is the entropy of
the solvent molecules. This last term accounts for the ion size effect that
modifies the classical Poisson-Boltzmann equation and was proposed earlier
by Borukhov et al. [38].

The variation of the free energy F = U − TS with respect to Ψ0(r)
provides the Poisson equation for the equilibrium

∇2Ψ0(r) = − zce

ε0εrs
n0
c(r) (2.10)
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and the equilibrium counterions concentration is obtained performing the
variation of the free energy with respect to n0

c(r)

n0
c(r) =

bc exp
(
− zceΨ0(r)

kBT

)
1 + bc

nmax
c

[
exp

(
− zceΨ0(r)

kBT

)
− 1
] (2.11)

where bc is an unknown coefficient that represents the ionic concentration
where the electric potential is chosen to be zero.

We also get the equilibrium electrochemical potential doing the variation
of the free energy with respect to n0

c(r) [46],

µ0
c(r) = zceΨ

0(r) + kBT ln

 n0
c(r)
nmax
c

1− n0
c(r)
nmax
c

 (2.12)

In the case of equilibrium there is no external field and the particle
is surrounded by a spherically symmetrical charge distribution. Applying
this symmetry and combining Eqs. 2.10 and 2.11, we obtain a modified
Poisson-Boltzmann equation for the equilibrium electric potential

d2Ψ0(r)

dr2
+

2

r

dΨ0(r)

dr
= − zce

ε0εrs

bc exp
(
− zceΨ0(r)

kBT

)
1 + bc

nmax
c

[
exp

(
− zceΨ0(r)

kBT

)
− 1
] (2.13)

In addition, the electroneutrality of the cell implies that

Q = 4πa2σ = −4πzce

∫ b

a
n0
c(r)r

2dr (2.14)

which is a necessary expression for the iterative calculation of the unknown
bc coefficient. Ruiz-Reina and Carrique recently shown that this problem
can be solve avoiding the iterative procedure [70]. For this purpose, we use
dimensionless variables, which are defined as

x =
r

a
Ψ̃0(x) =

eΨ0(r)

kBT
σ̃ =

ea

ε0εrskBT
σ

b̃c =
e2a2

ε0εrskBT
bc ñmaxc =

e2a2

ε0εrskBT
nmaxc (2.15)

and rewrite Eq. 2.13 as

g(x) ≡ d2Ψ̃0(x)

dx2
+

2

x

dΨ̃0(x)

dx
=

−zcb̃ce−zcΨ̃0(x)

1 + b̃c
ñmax
c

(
e−zcΨ̃0(x) − 1

) (2.16)



2.1. MODEL 21

where we have defined the function g(x). If we differentiate it, after a little
algebra, it is possible to eliminate the unknown coefficient b̃c and find that

g′(x) + zcg(x)Ψ̃′(x) +
1

ñmaxc

g2(x)Ψ̃′(x) = 0 (2.17)

where the prime stands for differentiation with respect to x. In terms of the
electric potential Eq. 2.17 is rewritten as

Ψ̃0′′′(x) +
2

x
Ψ̃0′′(x)− 2

x2
Ψ̃0′(x)

+ Ψ̃0′(x)

(
Ψ̃0′′(x) +

2

x
Ψ̃0′(x)

)
×
[
zc +

1

ñmaxc

(
Ψ̃0′′(x) +

2

x
Ψ̃0′(x)

)]
= 0 (2.18)

We solve this third order differential equation instead of Eq. 2.13 to
avoid the iterative process. An interested reader can find more details about
the modified Poisson-Boltzmann equation for the equilibrium in Ref. [53].

As indicated before, it is convenient to write the non-equilibrium quanti-
ties in terms of their equilibrium values plus a field-dependent perturbation.
The symmetry of the problem allows us to define the functions h(r), φc(r),
and Y (r) [104]

v(r) = (vr, vθ, vϕ) =

(
−2

r
h(r)E cos θ,

1

r

d

dr
(rh(r))E sin θ, 0

)
(2.19)

δµc(r) = −zceφc(r)E cos θ (2.20)

δΨ(r) = −Y (r)E cos θ (2.21)

with E = |E|.
Substituting into the differential electrokinetic equations, Eqs. 2.1 −

2.5, the above mentioned perturbation scheme, neglecting nonlinear pertur-
bations terms, and making use of the symmetry conditions of the problem
we obtain

L(Lh(r)) +
iωρs
η
Lh(r) = − zce

2

kBTηr

×
(

dΨ0(r)

dr

)
n0
c(r)

(
φc(r)−

n0
c(r)

nmaxc

Y (r)

)
(2.22)
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Lφc(r) +
iωλc
kBT

(φc(r)− Y (r)) =
e

kBT

(
dΨ0(r)

dr

)
×
(

1− n0
c(r)

nmaxc

)(
zc

dφc(r)

dr
− 2λc

e

h(r)

r

)
(2.23)

LY (r) = −z
2
c e

2n0
c(r)

ε0εrskBT
(φc(r)− Y (r)) (2.24)

where the L operator is defined by

L ≡ d2

dr2
+

2

r

d

dr
− 2

r2
(2.25)

According to Ref. [11], we incorporate a distance of closest approach
of the counterions to the particle surface, resulting from their finite size.
We assume that the counterions cannot come closer to the surface of the
particle than their effective hydration radius, R, and therefore the ionic
concentration will be zero in the region between the particle surface, r = a,
and the spherical surface, r = a + R, defined by the counterion effective
radius. This reasoning implies that counterions are considered as spheres of
radius R with a point charge at their center.

With this consideration, we solve the electrokinetic equations, Eqs. 2.13,
2.22 − 2.24, only between r = a + R and r = b. When we address the
problem in the region between r = a and r = a + R, the equations to
solve turn into the Laplace equation for the equilibrium electric potential,
and equations L(Lh(r)) = 0, φc(r) = 0, and LY (r) = 0 for the rest of the
spherical functions, because this region is free of charge. We call FIS+L
model this complete model that includes ion size effects and also considers
the distance of closest approach of the counterions to the charged particle
surface.

We have presented a system of equations that accounts for the response
of a salt-free suspension under alternating electric fields including ion size
effects. If we are interested in the response under a static electric field,
we only need to set ω = 0 in the previous equations. Also, if we consider
point-like counterions, nmaxc = ∞, we recover the expressions obtained by
Carrique et al. [68].

2.1.2 Boundary conditions

We next specify the boundary conditions used for the resolution of the
electrokinetic equations. In the case of the equilibrium electric potential,
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we fix its origin at r = b, which results in

Ψ0(b) = 0 (2.26)

Using the electroneutrality condition of the cell, Eq. 2.14, and the Gauss’
theorem to the outer surface of the cell, we obtain

dΨ0(r)

dr

∣∣∣∣
r=b

= 0 (2.27)

On the other hand, specifying the electrical state of the particle, and
applying Gauss’ theorem to the outer side of the particle surface r = a we
get

dΨ0(r)

dr

∣∣∣∣
r=a

= − σ

ε0εrs
(2.28)

We also force the equilibrium potential and its first derivative to be
continuous at the surface r = a + R defined by the counterion effective
radius.

Regarding dilute suspensions, it is very common in the literature to use
the surface charge (also regulated surface charge) or the surface potential as
a boundary condition at the particle surface when solving the equilibrium
Poisson-Boltzmann equation, and all of them are equally valid. When it
comes to concentrated suspensions, we prefer the use of the particle sur-
face charge as boundary condition by the following reasoning. The particle
charge is a property that can be often measured experimentally. Instead,
the surface potential depends on the choice of the potential origin, which
is the solution “bulk” for the dilute case (see the discussion in Appendix
A). As in the concentrated case there is not a clear “bulk”, the origin is
typically chosen at the outer surface of the cell, r = b, which depends on the
particle volume fraction, Eq. 1.6. In any case, we always can use the sur-
face potential as a boundary condition, representing the potential difference
between the particle surface and the outer surface of the cell.

In the case of the electric potential out of equilibrium, the discontinuity
of the normal component of the displacement vector at the particle surface
states

εrs∇δΨ(r) · r̂
∣∣
r=a
− εrp∇δΨP (r) · r̂

∣∣
r=a

= 0 (2.29)

where δΨP (r) is the perturbed part of the electric potential in the interior
region of the solid particle, and r̂ is the normal unit vector outward to the
surface. Also, the continuity of the electric potential at the surface of the
particle has to be considered

δΨ(r)
∣∣
r=a

= δΨP (r)
∣∣
r=a

(2.30)
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According to Shilov-Zharkikh-Borkovskaya boundary conditions [95],
the connection between the macroscopic experimentally measured electric
field 〈E〉 and local electric properties is

δΨ(r)
∣∣
r=b

= −〈E〉 · r
∣∣
r=b

(2.31)

We also must impose the continuity of the electric potential out of equi-
librium and of its first derivative at the boundary surface r = a+R.

Following again Shilov-Zharkikh-Borkovskaya boundary conditions, the
ionic perturbation at the outer surface of the cell must be zero

δnc(r)
∣∣
r=b

= 0 (2.32)

As the solid particles are impenetrable objects for the ions, the velocity
of the ions in the normal direction to the particle surface is zero

vc(r) · r̂
∣∣
r=a+R

= 0 (2.33)

Due to the inclusion of a distance of closest approach of the counterions
to the particle surface, the density of counterions nc(r, t) and their drift
velocity vc(r, t) will be discontinuous at the surface r = a + R, being zero
in the region [a, a+R] and non-zero in the region [a+R, b].

The liquid located at the particle surface, r = a, is considered immobile,
strongly attached to the particle. The latter fact that the liquid cannot slip
on the particle is expressed as

v(r)
∣∣
r=a

= 0 (2.34)

At the outer surface of the cell, r = b, we follow Kuwabara’s bound-
ary conditions [105]. In the radial direction, the velocity of the liquid far
from the particle will be the negative of the radial component of the elec-
trophoretic velocity

v(r) · r̂
∣∣
r=b

= −ve(r) · r̂
∣∣
r=b

(2.35)

According also to Kuwabara, the fluid flow is free of vorticity at the
outer surface of the cell

∇× v(r)
∣∣
r=b

= 0 (2.36)

At the boundary surface r = a + R we must consider the continuity of
the normal and tangential components of the fluid velocity as well as the
continuity of vorticity and pressure [106].
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Finally, we need to know the net force acting on the particle or the
unit cell. Details of the net force calculation can be found in Ref. [104] or
Appendix 1 in Ref. [68].

In terms of the radial functions Ψ0(r), Y (r), φc(r) and h(r), the bound-
ary conditions change into:
(i) at the particle surface r = a

dΨ0(r)

dr

∣∣∣∣
r=a

= − σ

ε0εrs
(2.37)

dY (r)

dr

∣∣∣∣
r=a

− εrp
εrs

Y (a)

a
= 0 (2.38)

h(a) = 0 (2.39)

dh(r)

dr

∣∣∣∣
r=a

= 0 (2.40)

(ii) at the surface r = a+R defined by the counterion effective radius

Ψ0(a+R−) = Ψ0(a+R+) (2.41)

dΨ0(r)

dr

∣∣∣∣
r=a+R−

=
dΨ0(r)

dr

∣∣∣∣
r=a+R+

(2.42)

Y (a+R−) = Y (a+R+) (2.43)

dY (r)

dr

∣∣∣∣
r=a+R−

=
dY (r)

dr

∣∣∣∣
r=a+R+

(2.44)

dφc(r)

dr

∣∣∣∣
r=a+R+

= 0 (2.45)

h(a+R−) = h(a+R+) (2.46)

dh(r)

dr

∣∣∣∣
r=a+R−

=
dh(r)

dr

∣∣∣∣
r=a+R+

(2.47)

Lh(a+R−) = Lh(a+R+) (2.48)

d3h(r)

dr3

∣∣∣∣
r=a+R−

=
d3h(r)

dr3

∣∣∣∣
r=a+R+

− zce

(a+R)η
n0
c(a+R+)Y (a+R+) (2.49)

(iii) and finally, at the outer surface of the cell r = b

Ψ0(b) = 0 (2.50)
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dΨ0(r)

dr

∣∣∣∣
r=b

= 0 (2.51)

Y (b) = b (2.52)

φc(b) = b (2.53)

Lh(b) = 0 (2.54)

η
d

dr

[
rLh(r)

]
r=b
− zcebcY (b)

= iωρs

(
h(b)− 2φ

ρp − ρs
ρs

h(b)− bdh(r)

dr

∣∣∣∣
r=b

)
(2.55)

This last boundary condition, Eq. 2.55, stands for the equation of mo-
tion of the unit cell. The boundary conditions for the case of static electric
fields are a particularization of the previous ones with ω = 0.

2.2 Method

We will discuss the results of the FIS+L electrokinetic model. In order
to show the realm of the finite ion size effect in salt-free suspensions, the
results are compared with the standard predictions for point-like ions, PL
model [67–69]. The electrokinetic equations with their boundary conditions
form a boundary value problem that can be solved numerically using the
MATLAB routine bvp4c [107].

For the sake of simplicity, we assume that the average volume occupied
by a counterion is V = (2R)3, being 2R the counterion effective diameter.
With this consideration, the maximum possible concentration of counteri-
ons due to the excluded volume effect is nmaxc = (2R)−3. This corresponds
to a simple cubic package (52% packing). In molar concentrations, the
values used in the calculations, nmaxc = 22, 4 and 1.7 M, correspond ap-
proximately to counterion effective diameters of 2R = 0.425, 0.75 and 1 nm,

Table 2.1: Parameter values used in the calculations.

T = 298.15 K a = 100 nm

η = 0.89·10−3 P zc = +1

εrs = 78.55 Dc = 9.34·10−9 m2/s

εrp = 2
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respectively. These are typical hydrated ionic diameters [108]. We present
in Table 2.1 the parameter values used in all the calculations. The chosen
parameters correspond to hydrated H+ counterions, which are commonly
found in many experimental conditions with salt-free suspensions of, for ex-
ample, negatively charged sulfonated particles, due to the cleaning process
of the suspension with proton exchange resins.

2.3 Calculated quantities

2.3.1 Electrophoretic mobility

The dynamic electrophoretic mobility µ of a spherical particle in a concen-
trated colloidal suspension can be defined from the relation between the
electrophoretic velocity of the particle vee

−iωt and the macroscopic electric
field 〈E〉e−iωt, which is given by

〈E〉 = − 1

Vcell

∫
Vcell

∇δΨ(r)dV (2.56)

From the boundary condition Eq. 2.35, the definition ve = µ〈E〉, and
making use of the symmetry conditions of the problem, Eq. 2.19, we obtain

µ =
2h(b)

b
(2.57)

As usual, the mobility data will be scaled as

µ∗ =
3ηe

2ε0εrskBT
µ (2.58)

where µ∗ is the nondimensional dynamic electrophoretic mobility. For the
case of a static electric field, if we impose ω = 0 in the electrokinetic equa-
tions, Eq. 2.57 will give us the low frequency limit of the dynamic elec-
trophoretic mobility, simply known as electrophoretic mobility.

2.3.2 Conductivity and dielectric response

The complex conductivity, K, of the suspension is usually defined in terms
of the volume averages of the local electric current density and electric field
in a cell representing the whole suspension.

〈J〉 =
1

Vcell

∫
Vcell

J(r)dV = K〈E〉 (2.59)
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where 〈E〉e−iωt is the macroscopic electric field, and J(r, t) = J(r)e−iωt is
the electric current density of a salt-free suspension, equal to the sum of the
conduction and displacement terms

J(r, t) = zcenc(r, t)vc(r, t) +
∂D(r, t)

∂t
(2.60)

or in terms of the perturbation quantities

J(r) = zcen
0
c(r)vc(r)− iωD(r) (2.61)

Following a similar procedure to that described for the complex conduc-
tivity of suspensions in salt solutions in Ref. [96] and using Shilov-Zharkikh-
Borkovskaya boundary conditions [95], we obtain (see also Ref. [69])

K =

(
z2
c e

2

λc

dφc(r)

dr

∣∣∣∣
r=b

− 2h(b)

b
zce

)
n0
c(b)− iωεrsε0

dY (r)

dr

∣∣∣∣
r=b

(2.62)

For the case of a static electric field, ω = 0, Eq. 2.62 turns into

K =

(
z2
c e

2

λc

dφc(r)

dr

∣∣∣∣
r=b

− 2h(b)

b
zce

)
n0
c(b) (2.63)

that gives us the conductivity of the suspension. This expression is also the
low frequency limit of real part of the complex conductivity.

From the complex conductivity, the real ε′r(ω) and imaginary ε′′r(ω) com-
ponents of the complex relative permittivity of the suspension εr(ω) are
calculated by writing

K(ω) = K(ω = 0)− iωε0εr(ω) = K(ω = 0) + ωε0ε
′′
r(ω)− iωε0ε′r(ω) (2.64)

ε′r(ω) = − Im[K(ω)]

ωε0
(2.65)

ε′′r(ω) =
Re[K(ω)]−K(ω = 0)

ωε0
(2.66)

2.4 Results: equilibrium electric double layer

In this section we show the results for the equilibrium electric double layer in
salt-free concentrated suspensions including ion size effects by calculating
the equilibrium electric potential, Ψ0(r), and the equilibrium counterions
concentration, n0

c(r).
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Fig. 2.1 shows the dimensionless equilibrium electric potential distribu-
tion, Fig. 2.1a, and the counterions concentration profiles, Fig. 2.1b, along
the cell. We compare the results of the FIS+L model for different counteri-
ons sizes (different dashed colored lines) with those of the PL model (solid
black line). The particle surface charge density have been chosen equal to
−40 µC/cm2 and the particle volume fraction is φ = 0.5 (very concentrated
suspension), which implies a normalized cell size of b/a = 1.26.

We observe in Fig. 2.1a that the inclusion of ion size effects always rises
the surface electric potential in comparison with the point-like predictions,
which are recovered in the limit of point-like counterions (nmaxc = ∞).
The reason is that the limitation of the counterions concentration in the
vicinity of the particle significantly diminishes the screening of the particle
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Figure 2.1: Dimensionless electric potential distribution (a) and counterions
concentration (b) along the cell. Dashed lines present the results of the
FIS+L model. Different colors stand for different counterion sizes. Solid
black lines show the results for point-like counterions.
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Figure 2.2: Effective charge divided by the particle charge along the cell.
Dashed lines present the results of the FIS+L model. Different colors stand
for different counterion sizes. Solid black lines show the results for point-like
counterions.

charge, which consequently increases the surface potential. We can also see
in Fig. 2.1b how ion size effects create saturated regions which corresponds
to plateaus in the counterions concentration profiles. These saturated re-
gions, and therefore also the increment in the surface potential, are higher
the higher the ion size, or analogously the lower nmaxc .

Fig. 2.2 shows the effective charge divided by the particle charge along
the cell for a particle volume fraction φ = 0.5. We compare the results of
the FIS+L model for different counterions sizes (different dashed colored
lines) with those of the PL model (solid black line). The effective charge
is the charge seen at a given radial distance from the center of the particle
which includes the own particle charge and the ionic volume charge density
in the double layer integrated from the particle surface to the r distance [71].
From this definition, the ratio Qeff/Qp is equal to one at the surface of the
particle and zero at the outer surface of the cell due to its electroneutrality.
The results of this figure reinforced those discussed previously in Fig. 2.1.
As expected, the larger the ion size, the lower the screening of the particle
charge.

Fig. 2.3 displays the dimensionless equilibrium surface electric poten-
tial for a wide range of particle surface charge densities, Fig. 2.3a, and
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Figure 2.3: Dimensionless surface electric potential for different values of
particle surface charge density (a) and particle volume fraction (b). Dashed
lines present the results of the FIS+L model. Different colors stand for
different counterion sizes. Solid black lines show the results for point-like
counterions.

particle volume fractions, Fig. 2.3b. We repeat this study for different
counterion sizes (different colored dashed lines) and for point-like counteri-
ons (black solid line). We find that the surface electric potential increases
with the particle charge density, Fig. 2.3a. However, in some cases there is
a different behavior in comparison with the point-like case. Initially, a fast
and rough increase of the surface potential with the surface charge density
is observed, which is followed by a much slower growth at higher surface
charge densities for the PL case or when the size of the counterions is very
small. This phenomenon is related to the classical counterion condensation
effect: for high surface charges a layer of counterions develops very close
to the particle surface [64, 109]. When the ion size is taken into account
we limit the appearance of the classical condensation effect. The reason is
that the additional counterions join the condensate enlarging it when the
surface charge is increased. This explains the further increase of the surface
potential observed for large ion sizes and high surface charges densities.
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Figure 2.4: Particle charge density plus charge accumulated in the counte-
rions condensate versus particle charge. Different colors stand for different
counterion sizes within the FIS+L model. Open circles and stars symbols
show the results for φ = 0.5 and φ = 10−5, respectively. All results are
divided by 4πa2.

On the other hand, the surface electric potential decreases when the
particle volume fraction increases, irrespectively of the case studied: PL or
FIS+L models, Fig. 2.3b. When the particle concentration raises, the avail-
able space for the counterions inside the cell decreases and, consequently,
the screening of the particle charge largely augments, thus reducing the
value of the surface potential.

We show in Fig. 2.4 the sum of the particle charge, Q, and the charge
accumulated in the counterions condensate, Qcond, as a function of particle
charge. All the results are divided by 4πa2 (with a = 100 nm). We repeat
this study for different ion sizes within the FIS+L model and for two dif-
ferent volume fractions in the concentrated and dilute limits. We observe a
linear relation between Q and Q + Qcond that is only kept for low particle
charges as the ion size increases. This is because when both the ion size and
charge are high enough, the counterions tend to locate mostly in the vicin-
ity of the particle surface, creating a condensate (see Fig. 2.1). From this
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point, as the particle charge is increased, the additional counterions join and
enlarge the condensate. This is shown in the plateau that appears for mod-
erate to high particle charges. The value of σ from which the counterions
start to condensate is lower the larger the ion size, as expected. Besides,
we note that the counterions condensation is independent of the particle
volume fraction (open circles and stars symbols are almost coincident for
every particle charge). All these results confirm those from Fig. 2.3.

The results from Fig. 2.4 should be considered qualitatively. The exact
charge value from which the condensate is formed as well as the magnitude of
the plateaus are strongly dependent on the definition of the condensate. For
these calculations we have considered that the condensate ends at the point
in which the counterions concentration differs 1% from its concentration in
the plateau (see Fig. 2.1). The deviations found at low particle charge are
due to this definition.

From the results, we think that it is clear that the influence of the finite
ion size effects on the EDL description cannot be neglected for many typical
particle charges and volume fractions.

2.5 Results: dc electrokinetics

Now we analyze the response of a salt-free concentrated suspension includ-
ing ion size effects to an external static electric field. Once the FIS+L
model presented in Section 2.1 is solved for ω = 0, we calculate the elec-
trophoretic mobility of the particles and the conductivity of the suspension.
The discussion of the results is presented in the two following subsections.

2.5.1 Electrophoretic mobility

The classical behavior of the electrophoretic mobility of spherical particles in
salt-free concentrated suspensions when we consider point-like counterions,
PL model, is as follows: for low particle surface charges, there is a large
increment of the electrophoretic mobility with the surface charge. When
the particle volume fraction decreases, this increment is even larger. This
behavior satisfies a Hückel law linearly connecting both magnitudes. When
the particle charge is further increased, the electrophoretic mobility reaches
a plateau and becomes practically independent of particle charge. This
fact has been associated with the generation of a condensation layer of
counterions close to the particle surface [64, 109]. Between these regimes
there is a maximum followed by a small diminution of the electrophoretic
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Figure 2.5: Scaled electrophoretic mobility against particle surface charge
density. Dashed colored stand for the results of the FIS+L model for dif-
ferent counterion sizes. Solid black line show the result for point-like coun-
terions.

mobility that depends on particle volume fraction. Also, the lower the
particle volume fraction, the higher the electrophoretic mobility for every
particle charge value. These classical behaviors are shown in solid black
lines in Figs. 2.5 and 2.6. The results displayed in solid colored lines in
Figs. 2.7 and 2.8 are also useful to understand this discussion.

If we take into account finite size counterions, FIS+L model, we find
deviations from the point-like case. As we can see from the results of the
dashed colored lines in Fig. 2.5, the small diminution passed the maximum
in the electrophoretic mobility tends to disappear when the ion size becomes
important. Moreover, if the size of the counterions is sufficiently large, also
the maximum disappears. In this case we find two different regimes for the
electrophoretic mobility upon changing the surface charge of the particles:
the initial large increment of the mobility with the surface charge, similar
to the one for point-like ions, now followed, for higher particle charges, by
another region with a small rate of increment of the electrophoretic mobility.

When we study the behavior of the electrophoretic mobility when chang-
ing the particle volume fraction, we observe that the results of the FIS+L
model differ from those for point-like ions, obtaining higher values of the
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Figure 2.6: Scaled electrophoretic mobility against particle volume frac-
tion. Dashed colored stand for the results of the FIS+L model for different
counterion sizes. Solid black line show the result for point-like counterions.

mobility as we approach the concentrated regime, see dashed colored lines
in Fig. 2.6. Also, if the ion size is sufficiently large, we can find a broad
minimum at high particle volume fraction, in contrast with the PL case.

If the counterion size approaches to zero, or equivalently nmaxc → ∞,
the results of the FIS+L model approximate to those of the PL model in
any case. Also, for low particle charges and low particle volume fractions
the results of both models are nearly the same. For the remaining situa-
tions we always observe that the FIS+L model predicts higher values of the
electrophoretic mobility than those calculated with the classical model for
point-like ions, whatever the ion size.

As a main conclusion from Figs. 2.5 to 2.8, the consideration of finite
ion size effects leads to an increase of the electrophoretic mobility over the
PL case, using H+ ions as counterions. As the ionic concentration in the cell
has been altered, we will analyze the changes in the convective fluid flow,
the counterions fluxes and the perturbed counterions concentration, as well
as the overall forces and polarizations induced by the electric field for the
FIS+L model in comparison with the PL case.
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Figure 2.7: Scaled electrophoretic mobility against the surface charge den-
sity for different particle volume fraction values. Solid lines show the results
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Figure 2.9: Scaled polar component of the fluid velocity over the particle
equator θ = π/2 (a), and scaled radial component of the fluid velocity at
the front of the particle θ = π (b), along the cell for different ion sizes.
Different lines have the same meaning than those shown in Fig. 2.5.

Fig. 2.9a shows the scaled polar component of the fluid velocity over
the particle equator, θ = π/2, and Fig. 2.9b presents the scaled radial
component of the fluid velocity at the front of the particle, θ = π, along the
cell. Solid black lines represent the results of the PL model. Dashed colored
lines stand for the results of the FIS+L model for different counterion sizes.
The particle surface charge density has been chosen equal to −40 µC/cm2,
and the particle volume fraction is φ = 0.5, which implies a normalized cell
size of b/a = 1.26. We define the scaled fluid velocity as

v∗(r) =
3ηe

2ε0εrskBTE
v(r) (2.67)

where the different components of v(r) can be obtained from Eq. 2.19.
Both quantities, vθ at π/2 and vr at π, are of interest because they give us
an idea of the magnitude of the electrophoretic velocity because they are
antiparallel to it.
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Figure 2.10: Scaled polar component of the flux of counterions over the
particle equator θ = π/2 (a), and scaled radial component of the flux of
counterions at the front of the particle θ = π (b), along the cell for different
ion sizes. Different lines have the same meaning than those shown in Fig.
2.5. In the inset of Fig. 2.10a we enlarge the region close to the particle
surface.

We can see how the polar fluid velocity increases with the distance to
the particle surface, with a high rate close to the particle surface, and di-
minishing it as we approximate to the outer surface of the cell. In the case
of the radial component, there is a linear increase after an initial slower
growth rate very close to the particle surface. This behavior is the same
for the PL and FIS+L models. We also observe that the numerical values
obtained with the FIS+L model are larger than those obtained with the PL
model, in concordance with our predictions for the mobility.

Fig. 2.10a shows the scaled polar component of the counterions flux
over the particle equator, θ = π/2, and Fig. 2.10b presents the scaled radial
component of the flux of the counterions at the front of the particle, θ = π,
along the cell. Different lines have the same meaning than in Fig. 2.9. We
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define the scaled counterions flux as

J∗c(r) =
3ηe3a2

2(ε0εrskBT )2E
Jc(r) (2.68)

being Jc(r) = nc(r)vc(r), where vc(r) is obtained from Eq. 2.4. We can
see in Fig. 2.10 how the inclusion of finite ion size effects largely decreases
the magnitude of the counterions fluxes close to the particle surface in both
the polar and the radial directions in comparison with the PL case. In
addition, the counterions fluxes are highly increased in the FIS+L case as
we move away from the particle surface because now both the counterions
concentration and the counterions velocity (not shown for brevity) reach
higher values.

The enhancement of the fluid velocity observed in the FIS+L case in
comparison with the PL model could be associated with the increment of
the counterions fluxes in the region not in the immediate vicinity of the
particle, because the ions have been expelled out due to the excluded volume
effect, and consequently the electrical body force in that region is greater.
However, as we can see in Table 2.2, the total electrical body force, −F ∗e ,
is lower in the FIS+L case, in comparison with the PL case. This is due
to a very large diminution of the electrical body force very close to the
particle when the finite ion size is taken into account, not only because ions
have moved away from the vicinity of the particle surface but also for the
remarkable diminution of the local electric field due to the increased induced
electric polarization (see Table 2.2).

The total hydrodynamic and electric forces acting on the particle shown

Table 2.2: Scaled hydrodynamic, F ∗h , and electric, F ∗e , forces acting on the
particle in the direction of the field. The total body force in the fluid is
equal to −F ∗e due to the electroneutrality of the cell. 〈PC〉∗ and 〈PD〉∗ are
the scaled induced charge and dielectric polarizations in the direction of the
field, respectively. All the calculations were performed at σ = −40µC/cm2

and φ = 0.5.

Model / nmaxc F ∗h F ∗e 〈PC〉∗ 〈PD〉∗

PL 685 -696 346 -71.7

FIS+L / 22 M 524 -524 365 -73.1

FIS+L / 4 M 447 -447 386 -73.8

FIS+L / 1.7 M 394 -394 418 -74.2
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in Table 2.2 can be calculated by

Fh =

∫
Sp

σ̃H · r̂ dSp (2.69)

Fe =

∫
Sp

σ̃M · r̂ dSp (2.70)

where Sp is the surface of the solid particle, and σ̃H and σ̃M are the hydro-
dynamic and the Maxwell stress tensors, respectively [9]. Evaluating these
expressions, we obtain

Fh =
4

3
πa2E

[
ηa

d3h

dr3

∣∣∣∣
r=a

+ η
d2h

dr2

∣∣∣∣
r=a

− zcen0
c(a)Y (a)

]
k̂ (2.71)

Fe =
4

3
πa2Eσ

Y (a)

a

(
εrp
εrs

+ 2

)
k̂ (2.72)

where k̂ points to the direction of the macroscopic electric field. Both forces
are scaled as follows

F∗e,h =
3e

4πaε0εrskBTE
Fe,h (2.73)

The numerical values of the F ∗e are negative because this force has the
opposite direction of the electric field for a negative particle. The hydro-
dynamic force opposes the movement of the particle and therefore has the
direction of the field. In the stationary state the total force acting on the
particle must be zero, as we can see by summing the values of both forces in
Table 2.2. The small numerical discrepancies observed for the PL case can
be removed by improving the mesh for the resolution of the electrokinetic
equations very close to the particle surface although a large computational
time is required.

It is worthwhile to mention that both the hydrodynamic and the electric
forces calculated in Table 2.2 for the FIS+L model are lower than those of
the PL case. The electric force acting on the particle has a driving and
a relaxation contribution. As the driving force is constant in the study
displayed in Table 2.2, the diminution of the total electric force is related
with a change of the relaxation force as finite ion size is taken into account.

This relaxation force will depend on the electric dipole moment induced
on the particle and its double layer by the electric field. A related quantity
is the average induced dipole moment density whose components are: the
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charge polarization, 〈PC〉, and the induced dipole moment density arising
from the polarization of the dielectric continuum of the medium and the
particles, 〈PD〉

〈PC〉 =

〈
1

Vcell

∫
Vcell

rzceδnc(r)dV

〉
(2.74)

〈PD〉 =

〈
−1

Vcell

∫
Vcell

r(ε(r)− ε0)∇δΨ(r)dV

〉
(2.75)

where

ε(r) =


εrpε0 r ∈ Vp

εrsε0 r ∈ Vs
(2.76)

and Vp and Vs are the particle and solution volumes in the cell, respectively.
According to the procedure developed for AC electric fields and point-like
ions by Bradshaw-Hajek et al. [110], particularized to its DC limit and also
accounting for the distance of closest approach of the counterions to the
particle surface, the latter equations become

〈PC〉 = −ε0εrs
[
1− dY

dr

∣∣∣∣
r=b

+

(
a+R

b

)3

×
(

dY

dr

∣∣∣∣
r=a+R+

− Y (a+R−)

a+R

)]
〈E〉 (2.77)

〈PD〉 = ε0

[
(εrp − εrs)φ

Y (a)

a
+ (εrs − 1)

]
〈E〉 (2.78)

We show in Table 2.2 the scaled average polarization contributions,
〈PC〉∗ and 〈PD〉∗, calculated by

〈PC,D〉∗ =
〈PC,D〉
ε0E

(2.79)

The charge polarization takes positive values and therefore the induced
dipole moment generates an electric field which opposes the external one,
thus penalizing the particle movement. On the contrary, the induced dipole
moment due to the dielectric polarization has the opposite direction, rein-
forcing the effect of the external electric field on the particle movement. As
the charge polarization contribution is considerably larger than the dielec-
tric polarization one, see Table 2.2, the effect on the particle movement will
be a net relaxation force that opposes the electric driving force, yielding a
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Figure 2.11: Scaled perturbed counterion concentration in the direction of
the field (θ = 0) along the cell for different ion sizes. Different lines have
the same meaning than those in Fig. 2.5.

smaller total electric force in the FIS+L model, in comparison with the PL
case (see Table 2.2).

In Fig. 2.11 we observe the scaled perturbed counterion concentration in
the direction of the field (θ = 0) along the cell. This quantity is responsible
of the charge polarization contribution as we can see in Eq. 2.74. Solid black
lines represent the results of the PL model. Dashed colored lines stand for
the results of the FIS+L model for different counterion sizes. The perturbed
counterion concentration is scaled as

δn∗c(r) =
ea

ε0εrsE
δnc(r) (2.80)

where, using Eqs. 2.12, 2.20 and 2.21, we have

δnc(r) =
zce

kBT
n0
c(r) (Y (r)− φc(r))E cos θ (2.81)

We observe that the perturbed counterion concentration decreases as-
ymptotically to zero at the outer surface of the cell (b/a = 1.26) in all cases
according to Shilov-Zharkikh-Borkovskaya boundary condition, Eq. 2.32. In
the PL case, we obtain an excess of counterions at the rear of the particle,
θ = 0, and a defect of counterions at the front of the particle, θ = π, due
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to a counterions migration from the front to the rear of the particle when
the external electric field is applied. This excess of counterions is mainly
located very close to the particle surface and generates an electric dipole
moment that points to the direction of the electric field.

When we take into account finite size counterions, FIS+L model, the
excess of counterions is lower near the particle surface in comparison with
the PL case, see Fig. 2.11. As we noted in Fig. 2.1, the equilibrium con-
centration profile shows a counterions condensate that increases its width
upon increasing the size of the counterions because of steric reasons. There-
fore, when the external electric field is applied, the excess of counterions
cannot be located in the condensate, full of counterions mainly for high
particle charges. This is the reason why the main region of excess of coun-
terions is now found at farther distances from the particle surface. Also, the
consideration of an excluded region in contact with the particle makes the
perturbed concentration profile to be shifted to larger distances from the
particle surface as we see in Fig. 2.11. In all the cases studied, the charge
contribution to the induced electric dipole moment points to the direction
of the electric field which penalizes the movement of the particle by the
relaxation effect [9].

According to Table 2.2, the charge polarization contribution is larger the
larger the ion size. This fact is in concordance with an increase in the charge
contribution to the induced electric dipole moment that we can associate to
the charge redistribution depicted in Fig. 2.11 due to the excluded volume
effect.

Summarizing, we have seen that when we introduce the ion size effects
there is a remarkable diminution of the total electric force acting on the
particle (see Table 2.2). This decrease grows with the ion size and with the
inclusion of the excluded region. The diminution of the total electric force
must be accompanied, in the stationary state, by a corresponding diminu-
tion of the total hydrodynamic force. According to the theory of classical
electrokinetics [9], the total hydrodynamic force could be decomposed in a
viscous drag and a electrophoretic retardation contribution. In this frame,
the above mentioned decrease of the electric body force as ions size effects are
considered produces a diminution of the electrophoretic retardation force,
which opposes to the movement of the particle, as it happens in the FIS+L
case. However, a complete explanation of the observed increase in the elec-
trophoretic mobility will force us to study the transient regime after the
application of the external field and the evolution of the different forces in-
volved until the stationary state is reached. In the case we are concerned in
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Figure 2.12: Electrical conductivity against particle surface charge density.
Dashed lines stand for the results of the FIS+L model for different counte-
rion sizes. Solid black line present the results for point-like counterions.

this work, the final result is that the electrophoretic mobility of the particle
is higher in the FIS+L case in comparison with the PL model using H+

ions as counterions, being these ions commonly found in many experimen-
tal salt-free suspensions. For other ionic species the behaviors observed can
be different, depending on the diffusion coefficient of the ion, because the
various contributions to the total force will be altered.

2.5.2 Electrical conductivity

The electrical conductivity of salt-free concentrated suspensions with point-
like ions behaves classically as follows: the conductivity increases as surface
charge density increases for any volume fraction [67]. For large particle
charges, the conductivity tends to reach a plateau because of the classic
counterion condensation effect [64, 109]: it appears that a critical particle
charge density exists beyond which there is no appreciable influence on
the conductivity. Once this critical charge value is attained, increasing the
amount of counterions by raising the surface charge even more simply feeds
the condensation region, where a high accumulation of counterions takes
place close to the particle surface, leaving the charge and potential outside
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Figure 2.13: Electrical conductivity against particle volume fraction.
Dashed lines stand for the results of the FIS+L model for different counte-
rion sizes. Solid black line present the results for point-like counterions.

that region virtually unchanged. There is also a conductivity enhancement
with particle volume fraction because the increasing number of the double-
layer mobile ions is not offset by the presence of the nonconducting volume
occupied by the particles in the unit volume. These behaviors are shown
in solid black lines in Figs. 2.12 and 2.13, and in solid colored lines in Fig.
2.14.

When we take into account finite size counterions (FIS+L model, dashed
lines in Figs. 2.12, 2.13 and 2.14) we observe similar behaviors but the nu-
merical values of the electrical conductivity are always higher for any coun-
terion size for moderate to high particle charges in concentrated suspensions.
If the counterion size approaches to zero, or equivalently nmaxc → ∞, the
results of the FIS+L model approximate to those of the PL model. Also,
for low particle charges and low particle volume fractions the results of both
models are almost coincident.

According to Fig. 2.10 the counterions fluxes not in the immediate vicin-
ity of the particle have been enhanced in the FIS+L model in comparison
with the PL case. This enhancement gives rise to a larger conductivity of the
suspension, because it predominates over the larger PL counterions fluxes
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Figure 2.14: (a) Electrical conductivity against the surface charge density
for different particle volume fraction values. (b) Electrical conductivity
against the particle volume fraction for different surface charge densities.
Solid lines show the results for point-like ions. Dashed lines show the results
of the FIS+L model.

very close to the particle surface. As these augmented counterions fluxes in
the FIS+L model grow with the counterion size, the electric conductivity
increases as well (see Figs. 2.12, 2.13 and 2.14).

Although all the conductivity calculations have been performed with H+

counterions, we have checked that the conductivity behavior shown before
maintains for other counterions species with different diffusion coefficients.

2.6 Results: ac electrokinetics

In this section we analyze the changes that appear when we consider finite
size counterions in the response of a salt-free concentrated suspension to an
oscillating electric field. Once we solve the complete FIS+L model presented
in Section 2.1, we calculate the dynamic electrophoretic mobility of the



2.6. RESULTS: AC ELECTROKINETICS 47

particles and the relative permittivity of the suspension. The discussion of
the results is presented in the following subsections.

2.6.1 Point-like model

The classical frequency response of a salt-free concentrated suspension with
point-like counterions, PL model, is as follows: (i) at low frequency, the elec-
tromigration and diffusion processes have enough time to be fully developed
around the particle and, commonly, this fact leads to the generation of an
induced electric dipole moment that tends to brake the particle motion. In
this frequency region, there is a plateau value of the dynamic electrophoretic
mobility that coincides with the electrophoretic mobility in static electric
fields. (ii) As the frequency increases, we find a frequency region where the
counterions cannot follow the comparatively fast field oscillations. Thus, the
above mentioned dipolar moment decreases and, consequently, the dynamic
mobility increases. This process is known as Maxwell-Wagner-O’Konski
(MWO) relaxation and takes place whenever the medium and the charged
particle, surrounded by its EDL, present different conductivities and per-
mittivities. (iii) Finally, the frequency can be so high that the inertia of the
particle and fluid restricts the motion progressively. As a result, the mobil-
ity shows a continuous decline when the frequency rises, which is known as
the inertial relaxation.

There is another classical relaxation mechanism, the alpha relaxation [7],
which is related to the concentration polarization effect (i.e., the presence
of a gradient of neutral electrolyte around the particle). We do not find
any alpha relaxation in a salt-free suspension, as was explained in Ref. [73],
because we only have one ionic species, the added counterions.

In order to clarify the discussion, we will try to separate the different
mechanisms by performing three different variations of the PL model:

(i) the complete PL model that includes all the mentioned effects;
(ii) the pure inertial response where we do not allow any perturbation of

the ionic atmosphere from the equilibrium values. So, breaking mechanisms
associated with the charge polarization are excluded in this variation;

(iii) the inertia-free response, where we have eliminated all the inertial
terms in the electrokinetic equations.

In Fig. 2.15 we show the modulus of the scaled dynamic mobility for the
three last-mentioned PL variations. We use two different particle volume
fractions at a given particle charge density. We display in solid lines the
complete PL model, in dashed lines the pure inertial response, and in dotted
lines the inertia-free response.
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Figure 2.15: Modulus of the scaled dynamic electrophoretic mobility as a
function of frequency for different particle volume fractions. We use three
variations of the PL model. Solid lines stand for results of the complete PL
model. Dashed lines show the pure inertial response. Dotted lines display
the inertia-free response.

The pure inertial response behaves as follows: after an initial low fre-
quency mobility plateau, the mobility monotonously decreases with fre-
quency. This plateau has larger values than that of the complete PL model.
The difference between the pure inertial response and the PL model is due
to the absence of breaking effects on particle motion associated with the
induced dipole moment (double layer relaxation effect).

In the numerical results corresponding to the inertia-free response, we
observe one or two successive increments in the dynamic mobility for high
or low particle volume fraction, respectively. These increments are related
to one or two successive MWO relaxation processes in each case. When we
introduce the inertia (dashed lines) to get the complete PL model (solid
lines), these above mentioned increments become into one or two successive
peaks, as can be observed. The diminution of the dynamic mobility after
the first maximum is therefore due to the inertial relaxation.

As was expected, once all the MWO processes have relaxed in the high
frequency limit, the mobility in the inertia-free response curve reaches the
same plateau value than the one of the pure inertial response for low frequen-
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cies. This is because, when the induced polarization completely disappears,
the counterions distribution coincides with that of the equilibrium as in the
pure inertial response.

2.6.2 Maxwell-Wagner-O’Konski relaxations

We have observed that two differenced MWO relaxations can exist. They
will be related to two differenced regions in the EDL. Through the Wag-
ner formula for a constant dielectric mixture, it is possible to obtain the
frequency and the dielectric increment of a MWO relaxation [7]

ωMWO =
(1− φ)Kp + (2 + φ)Ks

(1− φ)ε0εrp + (2 + φ)ε0εrs
(2.82)

∆εMWO =
9φ(1− φ)

(1− φ)εrp + (2 + φ)εrs

[
εrsKp − εrpKs

(1− φ)Kp + (2 + φ)Ks

]2

(2.83)

where Kp and Ks are the conductivities of the particles and the medium,
respectively. The particles are assumed to be made of a nonconducting
material. Their conductivity is exclusively associated with the surface con-
ductivity, Kσ, that appears due to an excess of counterions in the ionic
atmosphere, Kp = 2Kσ/a [8]. Eqs. (2.82) and (2.83) were derived without
allowance of mutual polarization of particles and they are valid for suspen-
sions with added electrolyte, thin EDL, and reasonably low φ.

The latter equations predict only one MWO relaxation process. How-
ever, for suspensions of highly charged particles, two different MWO re-
laxations have been considered in the literature to explain their dielectric
response. This consideration is based on the existence of two differenced
regions in the EDL, specially when σ is sufficiently high and ion size ef-
fects are considered, see Fig. 2 on Ref. [53]. The first one is a condensate
of counterions very close to the particle surface. The second one is a dif-
fuse layer that extends from the end of the condensate to the outer surface
of the cell. When we have finite size counterions, the condensate consists
in a homogeneous region where counterions are well packaged. In the PL
case, such picture of the condensate is not valid, but there are theoretical
evidences of the existence of a thin region with different behavior in the
electric potential and ionic distribution than in the diffuse layer [64,73]. As
was suggested on Ref. [73], we will consider each region with a different
associated MWO relaxation process and roughly estimate their MWO re-
laxation frequencies and dielectric increments to qualitatively explain the
behavior of both MWO relaxation processes.
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To obtain the relaxation frequency of the condensate, we need to cal-
culate the surface conductivity of the counterion condensation layer. Con-
sidering this layer with a mean concentration nmaxc and a thickness δ, we
obtain

Kσ =
z2
c e

2nmaxc δ

λc
(2.84)

For the study of the condensate relaxation, the conductivity of the coun-
terions in the diffuse layer, Ks, will be taken equal to zero, because it has
no influence in the condensate relaxation process. Using Kp = 2Kσ/a and
εrp � εrs, according to Eq. (2.82) we obtain a relaxation frequency

ωcondMWO =
2z2
c e

2nmaxc δ(1− φ)

ε0εrsaλc(2 + φ)
(2.85)

and with Eq. (2.83) a dielectric increment

∆εcondMWO =
9φεrs

(1− φ)(2 + φ)
(2.86)

To obtain only the relaxation process of the diffuse layer, we need to
calculate the conductivity of the counterions in this region, Ks,

Ks =
z2
c e

2nc
λc

=
−3zceσ

difφ

aλc(1− φ)
(2.87)

where nc is the average counterions concentration in the diffuse layer, and
σdif is the charge density at the spherical surface, r = a + δ, defined by
the thickness of the condensation layer. We now take Kp = 0 because we
consider the particle with its condensate as an equivalent particle with less
surface charge density, σdif . Introducing the expression of the conductiv-
ity Ks in Eq. (2.82) and considering εrp � εrs, we obtain the relaxation
frequency of the diffuse layer

ωdifMWO =
−3zceσ

difφ

ε0εrsaλc(1− φ)
(2.88)

and with Eq. (2.83) the dielectric increment

∆εdifMWO =
9φ(1− φ)ε2rp
(2 + φ)3εrs

(2.89)

As commented before, the previous expressions will be more precise for
reasonably low φ. Also, the expression for the MWO relaxation frequency
of the condensate will be more accurate than the one for the diffuse layer:
the use of an average concentration works better in the condensate because
it is a thin layer with homogeneous ionic density.
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Figure 2.16: Modulus of the scaled dynamic electrophoretic mobility of
the particles as a function of frequency for different particle surface charge
densities. All calculations performed at low particle volume fraction. Solid
lines show the results for point-like ions. Dashed lines show the results of
the FIS+L model with nmaxc = 4 M.

2.6.3 Finite ion size

We will jointly study both the dynamic electrophoretic mobility of the parti-
cles and the dielectric response of the suspension as a function of frequency,
because they are strongly interrelated.

Condensate MWO relaxation

Fig. 2.16 represents the modulus of the scaled dynamic electrophoretic
mobility and Fig. 2.17 the real (a) and the imaginary (b) parts of the
relative permittivity of a salt-free concentrated suspension as a function of
frequency. We compare the results of the FIS+L model (dashed lines) at a
fixed counterion size, nmaxc = 4 M, with those of the PL model (solid lines).
Different colors stand for different particle surface charges. The calculations
were made at low particle volume fraction, φ = 10−2.

For the low frequency mobility and permittivity plateaus, Figs. 2.16 and
2.17a, we observe that there is almost no difference between the finite size
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Figure 2.17: Real (a) and imaginary (b) parts of the relative permittivity
of the suspension as a function of frequency for different particle surface
charge densities. All calculations performed at low particle volume fraction.
Solid lines show the results for point-like ions. Dashed lines show the results
of the FIS+L model with nmaxc = 4 M.

and point-like results for any particle charge at low particle volume fraction.
As was discussed in Ref. [14] and Section 2.5 for the static mobility and
conductivity, this is because in the case of a dilute suspension the inclusion
of ion size effects only significantly modifies the counterions fluxes in the
immediate vicinity of the particle.

The MWO relaxation frequency is defined as that of the maximum in
the imaginary part of the permittivity, as it is well-known. We note that
for a suspension with low volume fraction, depending on particle surface
charge, one or two differenced MWO relaxations, Fig. 2.17, or analogously
one or two mobility maximums, Fig. 2.16, may take place. As we indicated
before, we associate the first one upon increasing frequency with the MWO
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relaxation of the diffuse part of the EDL, and the second one with the
relaxation of the condensate.

At low σ there is no condensate of counterions near the particle surface
and therefore no condensate MWO relaxation process is observed. When
we rise the particle charge, almost all the extra counterions accumulate in
the condensate [64,109], which significantly grows when also ion size effects
are considered [53]. This explains why ion size effects do not produce any
remarkable effect in the MWO relaxation of the diffuse part of the EDL and
why they considerably enhance the condensate MWO relaxation.

According to Eq. (2.88), the frequency of the MWO of the diffuse layer
changes with σdif . As the counterions concentration in the diffuse layer has
been scarcely altered, ωdifMWO remains basically the same in Figs. 2.16 and
2.17. On the contrary, Fig. 2.17b shows an increment of the frequency of
the condensate MWO relaxation when ion size effects are considered. This
is in agreement with Eq. (2.85), because ωcondMWO increases when the width
of the condensate, δ, raises. For the well resolved MWO peaks of the two
highest surface charge curves in Fig. 2.17b, we observe that the height of
the peaks is nearly independent on both, the surface charge density and the
ion size, in accordance with Eqs. (2.86) and (2.89).

In Section 2.5, we studied the effects of the electric polarization on the
magnitude of the static electrophoretic mobility in a salt-free concentrated
suspension with finite ion size effects. This study was based on a procedure
developed by Bradshaw-Hajek et al. [110]. We showed that the induced
charge polarization density was larger when ion size effects were considered.
The generalization of the latter study to ac electric fields leads to similar con-
clusions. As the relaxation effect and, correspondingly, the induced dipole
moment, have been increased with ion size, the second mobility maximum
in Fig. 2.16 attains higher values as well. This is due to the disappearance
of breaking mechanisms on the particle motion of increasing importance as
the ion size grows, causing the dynamic mobility to reach superior values
when the size of the counterions is taken into account.

Overlapping of MWO relaxations

We show the frequency response of the modulus of the scaled dynamic elec-
trophoretic mobility and the imaginary part of the relative permittivity of
the suspension in Figs. 2.18 and 2.19, respectively. In both Figures we com-
pare the results of the FIS+L model with nmaxc = 4 M, dashed lines, with
those of the PL model, solid lines, for different particle volume fractions. All
the calculations were performed at a high particle charge, σ = −40 µC/cm2.
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Figure 2.18: Modulus of the scaled dynamic electrophoretic mobility of the
particles as a function of frequency for different particle volume fractions.
Solid lines show the results for point-like ions. Dashed lines show the results
of the FIS+L model with nmaxc = 4 M.

We see in Figs. 2.16 and 2.17 how two differenced MWO relaxations take
place when surface charge increases in conditions of low volume fraction.
Now we observe that the MWO relaxations of the condensate and the diffuse
layer in Fig. 2.19, or analogously the two mobility maximums in Fig. 2.18,
tend to overlap in frequency for concentrated suspensions at high surface
charge. According to Eq. (2.88), ωdifMWO grows with volume fraction at a
rate φ/(1 − φ). This is in agreement with the frequency shift observed in
the MWO relaxation of the diffuse layer, indicated with black arrows in
Fig. 2.19. Eq. (2.85) predicts a frequency change with volume fraction at
a rate (1 − φ)/(2 + φ) for the condensate MWO relaxation. Then we find
no significant changes in ωcondMWO for low φ values, and a small decrease for
high volume fractions as shown in Fig. 2.19. These behaviors result in the
observed overlapping of the MWO relaxations for concentrated suspensions.

When we include ion size effects we find only changes in the condensate
MWO relaxation (enhancement of the corresponding mobility maximum
and small increase in ωcondMWO). These changes can be explained with the
same reasoning used for Figs. 2.16 and 2.17: the consideration of finite size
counterions significantly enlarges the condensate near the particle but does



2.6. RESULTS: AC ELECTROKINETICS 55

103 104 105 106 107 108 109 1010

f (Hz)
10-2

10-1

100

101

102

ε'
' r

(f)

φ=10−3

φ=10−2

φ=0.1
φ=0.5

σ=−40 µC/cm2;  nc
max=4 M

Figure 2.19: Imaginary part of the relative permittivity of the suspension
as a function of frequency for different particle volume fractions. Solid lines
show the results for point-like ions. Dashed lines show the results of the
FIS+L model with nmaxc = 4 M.

not produce remarkable effects in the diffuse layer. We also observe the well-
known diminution of mobility with the increase of volume fraction in Fig.
2.18 due basically to the larger screening of the particle charge [53]: when
the particle concentration grows, the available space for the counterions
inside the cell decreases and, consequently, the screening of the particle
charge is greatly raised, thus reducing the value of the surface potential
and, therefore, the mobility.

Highly charged concentrated suspensions

Figs. 2.20 and 2.21 show the modulus of the scaled dynamic electrophoretic
mobility and the real (a) and imaginary (b) parts of the relative permittivity
of the suspension as a function of frequency for different particle surface
charges. We compare the results of the FIS+L model with nmaxc = 4 M,
dashed lines, with those of the PL model, solid lines at a high particle
volume fraction, φ = 0.5.

Besides, Figs. 2.22 and 2.23 represent the same quantities at fixed parti-
cle surface charge, σ = −40 µC/cm2, and volume fraction, φ = 0.5. In these
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Figure 2.20: Modulus of the scaled dynamic electrophoretic mobility of
the particles as a function of frequency for different particle surface charge
densities. All calculations performed at high particle volume fraction. Solid
lines show the results for point-like ions. Dashed lines show the results of
the FIS+L model with nmaxc = 4 M.

Figures, we compare the results of the FIS+L model at different ion sizes
(different colored dashed lines) with those of the PL model (black lines).

As we mentioned before, for this high volume fraction value, the two
MWO relaxations are overlapped in a unique broad peak. We observe how
both the dynamic mobility and relative permittivity increase when we con-
sider finite size counterions in comparison with the PL case and when we
increase the particle surface charge. The reason is that the increase of
the surface charge or the consideration of ion size effects leads to an en-
hancement of the overall charge polarization in the EDL, resulting in both,
higher permittivity values as can be seen in Figs. 2.21a and 2.23a, and larger
heights of the corresponding peaks of the imaginary part, Figs. 2.21b and
2.23b. A similar explanation applies to the remarkable increment observed
in the mobility maxima, associated with the MWO relaxations, Figs. 2.20
and 2.22: the disappearance of the augmented induced dipole moment gives
rise to greater mobility values.

Figs. 2.21b and 2.23b display a shift to larger frequencies in the MWO
relaxation when ion size effects are considered. This shift is also larger the
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Figure 2.21: Real (a) and imaginary (b) parts of the relative permittivity of
the suspension as a function of frequency for different particle surface charge
densities. All calculations performed at high particle volume fraction. Solid
lines show the results for point-like ions. Dashed lines show the results of
the FIS+L model with nmaxc = 4 M.

larger the size of the counterions (lower nmaxc value). The MWO relaxation
of the diffuse layer is nearly independent of the ion size, Eq. (2.88), and,
therefore, the shift observed is entirely due to the displacement of the con-
densate MWO relaxation. We have checked numerically that the expression
of the MWO relaxation frequency of the condensate, Eq. (2.85), predicts
a shift to higher frequencies with the increase of the ion size through the
product nmaxc δ. This is because the width of the condensate δ augments
in a higher rate than the parameter nmaxc diminishes upon increasing ion
size [53]. When we increase the particle surface charge, we are also increas-
ing the surface conductivity Kσ of the condensate, for both PL and FIS+L
models, and consequently the frequency of the MWO relaxation rises.
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Figure 2.22: Modulus of the scaled dynamic electrophoretic mobility of the
particles as a function of frequency for different ion sizes (dashed lines).
Black lines show the results for point like ions.
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Figure 2.23: Real (a) and imaginary (b) parts of the relative permittivity
of the suspension as a function of frequency for different ion sizes (dashed
lines). Black lines show the results for point like ions.



Chapter 3

Realistic salt-free
suspensions

In this chapter, we deal with realistic salt-free concentrated suspensions in-
cluding ion size effects to get closer to experimental conditions. Our systems
consist of aqueous suspensions deionized maximally without any electrolyte
added during the preparation. Hence, in addition to the added counterions
released by the particles to the solution, we must also consider the H+ and
OH– ions from water dissociation. Moreover, if the suspension is open to
the atmosphere, there will be other ions produced by the atmospheric CO2

contamination. All these new ionic species could be coincident, or not, with
that of the added counterions. We analyze the influence of the finite ion
size in the equilibrium EDL of realistic salt-free suspensions by comparing
our results with those from Chapter 2 and with point-like calculations. We
also show some preliminary experimental results to test the validity of the
models discussed before.

3.1 Model

We generalize the model presented in Section 2.1 for the equilibrium EDL in
ideal salt-free concentrated suspensions to the general case of N ionic species
in the suspension. Of course the ionic species dissolved in the liquid medium
that appeared by water dissociation and atmospheric CO2 contamination
will be coupled by appropriate chemical equilibrium mass-action equations.
The details for each particular situation can be found in Subsection 3.1.1.

Let us consider a spherical charged particle of radius a and surface charge
density σ immersed in a realistic salt-free medium with N ionic species in-
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cluding that of the added counterions that counterbalance its surface charge.
In our description, the axes of the spherical coordinate system (r, θ, ϕ) are
fixed at the center of the particle. In the absence of any external field,
the particle is surrounded by a spherically symmetrical charge distribution.
Within a mean-field approximation, the total free energy of the system,
F = U − TS, can be written in terms of the equilibrium electric potential
Ψ0(r) and the equilibrium ionic concentration n0

i (r) of the different ionic
species, i = 1, . . . , N , of the suspension. The configurational internal en-
ergy contribution U is

U =

∫
dr

[
− ε0εrs

2
|∇Ψ0(r)|2 +

N∑
i=1

zien
0
i (r)Ψ0(r)−

N∑
i=1

µ0
in

0
i (r)

]
(3.1)

The first term is the self-energy of the electric field, where again ε0 is the
vacuum permittivity, and εrs is the relative permittivity of the suspending
medium. The next term is the sum of the electrostatic energies of the
different ionic species in the electrostatic mean field, and the last term
couples the system to a bulk reservoir, where µ0

i is the equilibrium chemical
potential of the ionic species i.

The entropic contribution −TS is

− TS = kBTn
max

∫
dr

[
N∑
i=1

n0
i (r)

nmax
ln

(
n0
i (r)

nmax

)

+

(
1−

N∑
i=1

n0
i (r)

nmax

)
ln

(
1−

N∑
i=1

n0
i (r)

nmax

)]
(3.2)

where kB is Boltzmann’s constant, T is the absolute temperature, and nmax

is the maximum possible ionic concentration due to the excluded volume
effect, defined as nmax = V −1, where V is the average volume occupied
by an ion in the solution. For simplicity, we assume that all types of ions
have the same size, and therefore nmax will take the same value for all of
them. The first term inside the integral is the sum of the entropy of the
different ionic species, and the second one is the entropy of the solvent
molecules. This last term accounts for the ion size effect that modifies the
classical Poisson-Boltzmann equation and was proposed earlier by Borukhov
et al. [38]

The variation of the free energy F = U − TS with respect to Ψ0(r)
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provides the Poisson equation

∇2Ψ0(r) = − e

ε0εrs

N∑
i=1

zin
0
i (r) (3.3)

and the ionic concentration of the ionic species i is obtained by performing
the variation of the free energy with respect to n0

i (r), yielding

n0
i (r) =

bi exp
(
− zieΨ

0(r)
kBT

)
1 +

N∑
j=1

bj
nmax

[
exp

(
−zjeΨ

0(r)

kBT

)
− 1

] (3.4)

where bi is an unknown coefficient that represents the ionic concentration
of the species i where the electric potential is zero.

Applying the spherical symmetry of the problem and combining Eqs.
3.3 and 3.4, we obtain a modified Poisson-Boltzmann equation for the equi-
librium electric potential considering N ionic species

d2Ψ0(r)

dr2
+

2

r

dΨ0(r)

dr
= − e

ε0εrs

N∑
i=1

zibi exp

(
−zieΨ

0(r)

kBT

)

1 +
N∑
i=1

bi
nmax

[
exp

(
−zieΨ

0(r)

kBT

)
− 1

] (3.5)

We need two boundary conditions to solve the modified Poisson-Boltz-
mann equation. The first one is

dΨ0(r)

dr

∣∣∣∣
r=b

= 0 (3.6)

which derives from the electroneutrality condition of the cell and the appli-
cation of Gauss’ theorem to the outer surface of the cell. The second one
is

Ψ0(b) = 0 (3.7)

that fixes the origin of the electric potential at r = b.

The equilibrium problem, Eqs. 3.5, 3.6, and 3.7, can be solved iteratively
using the electroneutrality condition of the cell and appropriate chemical
reactions to find the unknown bi coefficients (see Subsection 3.1.1 for details
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on bi calculation). This kind of problem can be solved in a better way by
using dimensionless variables [70], which are defined as

x =
r

a
Ψ̃0(x) =

eΨ0(r)

kBT
σ̃ =

ea

ε0εrskBT
σ

b̃i =
e2a2

ε0εrskBT
bi ñmax =

e2a2

ε0εrskBT
nmax (3.8)

and rewriting Eq. 3.5 as

g(x) ≡ d2Ψ̃0(x)

dx2
+

2

x

dΨ̃0(x)

dx
=

−
N∑
i=1

zib̃ie
−ziΨ̃0(x)

1 +

N∑
i=1

b̃i
ñmax

(
e−ziΨ̃

0(x) − 1
) (3.9)

where we have defined the function g(x). If we differentiate it, after a little
algebra, we find that

g′(x) +

N∑
i=1

z2
i b̃ie

−ziΨ̃0(x)

N∑
i=1

zib̃ie
−ziΨ̃0(x)

g(x)Ψ̃0′(x) +
1

ñmax
g2(x)Ψ̃0′(x) = 0 (3.10)

where the prime stands for differentiation with respect to x. In terms of the
electric potential, Eq. 3.10 is rewritten as

Ψ̃0′′′(x) +
2

x
Ψ̃0′′(x)− 2

x2
Ψ̃0′(x) + Ψ̃′0(x)

(
Ψ̃0′′(x) +

2

x
Ψ̃0′(x)

)

×


N∑
i=1

z2
i b̃ie

−ziΨ̃0(x)

N∑
i=1

zib̃ie
−ziΨ̃0(x)

+
1

ñmax

(
Ψ̃0′′(x) +

2

x
Ψ̃0′(x)

)
 = 0 (3.11)

Eq. 3.11 is a nonlinear third-order differential equation that needs three
boundary conditions to completely specify the solution. Two of them are
provided by Eqs. 3.6 and 3.7, which now read

Ψ̃0′(h) = 0; Ψ̃0(h) = 0 (3.12)
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where h = (b/a) = φ−1/3 is the dimensionless outer radius of the cell. The
third one specifies the electrical state of the particle, and can be obtained
by applying Gauss theorem to the outer side of the particle surface r = a

dΨ0(r)

dr

∣∣∣∣
r=a

= − σ

ε0εrs
(3.13)

Its dimensionless form is

Ψ̃0′(1) = −σ̃ (3.14)

Many theoretical and experimental studies have recently explored the
use of either constant surface potential or constant surface charge boundary
conditions. These conditions, although making the mathematical treatment
simpler, represent only limiting or idealized cases. Many biological and ar-
tificial particles have their surface charge associated with some degree of
dissociation of functional groups which depend on the nearby environment.
Constant surface potential and constant surface charge models would cor-
respond, respectively, to the cases when the dissociation reactions of the
functional groups are infinitely fast and infinitely slow [111]. Also, some
authors have derived an hybrid surface charge model to account for the
electrical state of the particles [112], which is a generalization of the con-
ventional constant surface potential and constant surface-charged density
models. Our model can be modified to include charge regulation mecha-
nisms at the particle surface.

It is very common in the literature to use the surface charge or the surface
potential as a boundary condition at the particle surface when solving the
equilibrium Poisson-Boltzmann equation, and both of them are valid. When
it comes to concentrated suspensions, we prefer to use the particle surface
charge as a boundary condition because in many cases of interest the particle
charge is a property that can be determined experimentally. Moreover,
the use of commercially available latex suspensions with fully dissociated
surface electrical groups, have led us to choose the constant surface charge
boundary condition. Besides, the surface potential depends on the choice
of the potential origin, and in the case of concentrated suspensions there
is not a standard criterium for this choice. As stated in Eq. 3.7 we have
chosen it at the outer surface of the cell, r = b.

If we consider point-like ions, nmax = ∞, Eq. 3.11 generates the ex-
pressions obtained by Ruiz-Reina and Carrique [70] for realistic salt-free
suspensions. Also, if we evaluate Eq. 3.11 considering that we have just one
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ionic species, the added counterions that counterbalance the particle sur-
face charge, the equation reduces to Eq. 2.18 for ideal salt-free suspensions
including ion size effects.

Following the work of Aranda-Rascón et al. [11], we incorporate a dis-
tance of closest approach of the ions to the particle surface, resulting from
their finite size. As we said before, for the sake of simplicity we have con-
sidered that all ions have the same size. We assume that ions cannot come
closer to the surface of the particle than the chosen effective hydration ionic
radius, R, and, therefore, the ionic concentration will be zero in the region
between the particle surface, r = a, and the spherical surface, r = a + R,
defined by the ionic effective radius.

The whole electric potential Ψ0(r) is now determined by combining
Laplace’s and the modified Poisson-Boltzmann equations into the follow-
ing stepwise equation

d2Ψ0(r)
dr2

+ 2
r

dΨ0(r)
dr = 0 a ≤ r ≤ a+R

Eq. 3.5 a+R ≤ r ≤ b
(3.15)

We must impose the continuity of the potential and of its first derivative
at the surface r = a+R, in addition to boundary conditions, Eqs. 3.6 and
3.7. The continuity of the first derivative comes from the continuity of the
normal component of the electric displacement at that surface.

As we have seen before, changing the system of second order differential
equations, Eq. 3.15, into one of third order, hugely simplify the resolution
process

Ψ̃0′′′(x) + 2
xΨ̃0′′(x)− 2

x2
Ψ̃0′(x) = 0 1 ≤ x ≤ 1 + ξ

Eq. 3.11 1 + ξ ≤ x ≤ h
(3.16)

where ξ = R/a and having used dimensionless variables. The boundary
conditions needed to completely close the problem are

Ψ̃0′
L(1) = −σ̃ Ψ̃0′

L(1 + ξ) =
−σ̃

(1 + ξ)2

Ψ̃0
P (h) = 0 Ψ̃0′

P (h) = 0

Ψ̃0
L(1 + ξ) = Ψ̃0

P (1 + ξ) Ψ̃0′
L(1 + ξ) = Ψ̃0′

P (1 + ξ) (3.17)
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where subscript L refers to the region in which the potential is calculated
using Laplace’s equation, and subscript P refers to the region in which we
evaluate the modified Poisson-Boltzmann equation.

The complete equilibrium electric potential Ψ̃0(x) is obtained numeri-
cally using Eqs. 3.16 and 3.17, including an iterative process for the cal-
culation of the bi coefficients. Once the electric potential is found, the
equilibrium ionic concentrations n0

i (r) for the different ionic species can be
derived (see subsection 3.1.1 for details).

3.1.1 Particularization for different realistic salt-free suspen-
sions

In this Subsection we give details of the calculation of the different bi coef-
ficients for realistic salt-free suspensions when we have, besides the added
counterions, water dissociation and atmospheric contamination ions. We
separate the cases in which the added counterions are coincident or not
with any of the other ionic species.

Added counterions and water dissociation

Let us consider that, in addition to the added counterions stemming from
the particle charging process, there are also H+ and OH– ions coming from
water dissociation in the liquid medium. This will always occur in aqueous
suspensions. The equilibrium mass-action equation for water dissociation,
which we assume to hold at the outer surface of the cell, is

[H+][OH−] = Kw ⇒ b̃H+ b̃OH− = K̃w (3.18)

where the square brackets stand for the molar concentration, Kw = 10−14

mol2/L2 is the water dissociation constant at room temperature, 298.15 K,
and K̃w is a dimensionless quantity defined by

K̃w =

(
103NAe

2a2

ε0εrskBT

)2

Kw (3.19)

with NA the Avogadro constant.
We can distinguish between two cases, (a) when the added counterions

are H+ or OH– ions, and (b) when they are of a different ionic species. The
distinction is important because in the (a) case, the added counterions will
enter in the equilibrium reaction equation for water dissociation, whereas
in the (b) case, they do not.
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Case a. In this case we have two different ionic species. Evaluating Eq.
3.9, particularized just for H+ and OH– ions, at x = h we obtain

Ψ̃0′′(h) = −zH+ b̃H+ − zOH− b̃OH− (3.20)

Using the relation between both b̃H+ and b̃OH− coefficients given by
Eq. 3.18, we can write Eqs. 3.16 and 3.20 in terms of just one unknown
coefficient, b̃H+ . The iterative process needed for the numerical resolution of
the third order version of the modified Poisson-Boltzmann problem remains

as follows. We choose an initial guess for the b̃H+ coefficient, say b̃
(0)
H+ = 0

or, in a more accurate way, the value obtained for point-like ions, and solve
Eq. 3.16 with the boundary conditions given by Eq. 3.17. We obtain
the solution Ψ̃0(0)(x), and then, we use Eq. 3.18 and 3.20 to find a new

value b̃
(1)
H+ , which will give us Ψ̃0(1)(x) using Eqs. 3.16 and 3.17 again. The

numerical iterative process is repeated until the relative variation of the
electric potential at the particle surface is lower than a prescribed quantity.
Although an iterative process has been used to obtain the solution to Eq.
3.16 with boundary conditions, Eq. 3.17, and Eqs. 3.18 and 3.20, this
procedure is much better than the original and equivalent iterative problem
defined by Eq. 3.15. The improved convergency and superior numerical
efficiency that are obtained when computing the third order problem lie
in the facts that all of the intermediate solutions Ψ̃0(n)(x) of the iterative
method have the correct slope Ψ̃0′(1) = −σ̃ at the particle surface. This is
not true if we use the original scheme because in that case the slope at the
particle surface is not determined by any condition.

Case b. In this case we have three different ionic species. Evaluating Eq.
3.9, particularized for the added counterions, of valency zc, and the ions H+

and OH–, at x = h we obtain

Ψ̃0′′(h) = −zcb̃c − zH+ b̃H+ − zOH− b̃OH− (3.21)

The added counterions counterbalance the overall charge on the particle
surface

σ̃ = −
∫ h

1

zcb̃ce
−zcΨ̃0(x)

1 +
N∑
i=1

b̃i
ñmax

(
e−ziΨ̃

0(x) − 1
)x2dx (3.22)

whereas the number of H+ and OH– must be equal due to the electroneu-
trality of the cell.
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Using the relation between both b̃H+ and b̃OH− coefficients given by Eq.
3.18, we can write Eqs. 3.16, 3.21, and 3.22 in terms of two unknown
coefficients, b̃c and b̃H+ . The iterative process to obtain the solution to Eq.
3.16 with boundary conditions, Eq. 3.17, and Eqs. 3.18, 3.21, and 3.22,
is similar to the one described before, but in this case we have the two
unknown coefficients, b̃c and b̃H+ , to be determined iteratively.

Added counterions, water dissociation, and atmospheric contam-
ination

Let us consider now that, in addition to the added counterions and the H+

and OH– ions coming from water dissociation, there are also present ions
stemming from the atmospheric CO2 contamination in the liquid medium.
This will always occur in aqueous suspensions in contact with the atmo-
sphere; the CO2 gas diffused into the suspension combines with water
molecules to form carbonic acid H2CO3, and then, the following dissoci-
ation reactions take place

H2CO3 � H+ + HCO−3 (3.23)

HCO−3 � H+ + CO=
3 (3.24)

with equilibrium dissociation constants K1 = 4.47 · 10−7 mol/L and K2 =
4.67·10−11 mol/L at room temperature, 298.15 K, respectively. The concen-
tration of H2CO3 molecules in water can be calculated from the solubility
and the partial pressure of CO2 in standard air. For a temperature of 298.15
K and an atmospheric pressure of 101300 Pa, the concentration of carbonic
acid is approximately [H2CO3] = 1.08 ·10−5 mol/L, depending its particular
value on the local environmental conditions. The dimensionless dissociation
constants and H2CO3 concentration are

K̃1 =
103NAe

2a2

ε0εrskBT
K1; K̃2 =

103NAe
2a2

ε0εrskBT
K2

ÑH2CO3
=

103NAe
2a2

ε0εrskBT
NH2CO3

(3.25)
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where all the values are taken in S.I. units. The equilibrium mass-action
equations, which we assume to hold at the outer surface of the cell, are

[H+][HCO−3 ]

[H2CO3]
= K1 ⇒

b̃H+ b̃HCO−
3

ÑH2CO3

= K̃1 (3.26)

[H+][CO=
3 ]

[HCO−3 ]
= K2 ⇒

b̃H+ b̃CO=
3

b̃HCO−
3

= K̃2 (3.27)

Hereafter, the second dissociation reaction, Eq. 3.24, will be neglected
because the terms associated to the ion CO=

3 that appears in Eq. 3.16
are several orders of magnitude lower than those due to the ion HCO−3 ,
in accordance with what Ruiz-Reina and Carrique showed in a previous
work [70].

Once more, we can distinguish between two cases, (a) when the added
counterions are coincident with one of the ionic species in the system (H+,
OH– or HCO–

3) and (b) when they are of a different ionic species. In the (a)
case, the added counterions will enter in one of the equilibrium dissociation
equations, whereas in the (b) case, they do not.

Case a. In this case we have three different ionic species. Evaluating Eq.
3.9, particularized for H+, OH– and HCO–

3 ions, at x = h we obtain

Ψ̃0′′(h) = −zH+ b̃H+ − zOH− b̃OH− − zHCO−
3
b̃HCO−

3
(3.28)

Using the relations between coefficients b̃H+ , b̃OH− and b̃HCO−
3

given by

Eqs. 3.18 and 3.26, we can write Eqs. 3.16 and 3.28 in terms of just one
unknown coefficient, b̃H+ . The iterative process to obtain the solution to
Eq. 3.16 with boundary conditions, Eq. 3.17, and Eqs. 3.18, 3.26, and
3.28, is similar to the case (a) for added counterions and water dissociation
described before.

Case b. In this case we have four different ionic species. Evaluating Eq.
3.9, particularized for the added counterions, of valency zc, and the ions
H+, OH– and HCO–

3, at x = h we obtain

Ψ̃0′′(h) = −zcb̃c − zH+ b̃H+ − zOH− b̃OH− − zHCO−
3
b̃HCO−

3
(3.29)

The added counterions counterbalance the overall charge on the particle
surface, as in Eq. 3.22, whereas the number of ions H+, OH– and HCO–

3

must balance due to the electroneutrality of the cell.
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Using the relations between coefficients b̃H+ , b̃OH− and b̃HCO−
3

given by

Eqs. 3.18 and 3.26, we can write Eqs. 3.16, 3.29, and 3.22 in terms of
two unknown coefficients, b̃c and b̃H+ . The iterative process to obtain the
solution to Eq. 3.16 with boundary conditions, Eq. 3.17, and Eqs. 3.18,
3.26, 3.29, and 3.22, is similar to the case (b) for added counterions and
water dissociation described before.

3.2 Method

We will discuss the results of the FIS+L model for the equilibrium. We will
consider different realistic salt-free concentrated suspensions: suspensions
with added counterions coincident, WDC (read it as Water Dissociation
Coincident), or not, WDNC (Water Dissociation Non-Coincident), with the
ions that stem from water dissociation, i.e., H+ or OH–; and suspensions
with added counterions coincident, WDACC (read it as Water Dissociation
Atmospheric Contamination Coincident), or not, WDACNC (Water Dis-
sociation Atmospheric Contamination Non-Coincident), with the ions that
stem from water dissociation or atmospheric contamination, i.e., H+, OH–,
HCO–

3. We will compare them with the results of the FIS+L model for ideal
salt-free suspensions with only added counterions (SF), presented in Section
2.4. In order to show the realm of the finite ion size effect in realistic salt-
free suspensions, the results are compared with the standard predictions for
point-like ions, PL model [70].

Eqs. 3.11, 3.12 and 3.14 form a boundary value problem that can be
solved numerically using the MATLAB routine bvp4c [107]. It can be easily
demonstrated that solving the third-order problem is mathematically equiv-
alent to finding the solution of the modified Poisson-Boltzmann problem,
that is, any function satisfying Eqs. 3.11, 3.12 and 3.14 also satisfies Eqs.
3.5, 3.6, and 3.7, and vice versa. In both cases, we use an appropriate itera-
tive process for the calculation of the bi coefficients in the resolution of the
differential equation. We set initial values for the different bi coefficients,
but the use of the third order problem with the addition of the bound-
ary condition Eq. 3.14, improves the convergency giving rise to a better
numerical resolution.

For all the calculations, the temperature has been taken equal to T =
298.15 K and the relative electric permittivity of the suspending liquid εrs =
78.55, which coincides with that of the deionised water. Also, the valency of
the added counterions has been chosen equal to zc = +1, when they are of a
different ionic species as that of the ions stemming from water dissociation
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or atmospheric CO2 contamination, and the particle radius a = 100 nm. We
use the same ionic diameters, or correspondingly nmax values, than those
shown in Section 2.2.

3.3 Results: equilibrium electric double layer

In this section we show the results for the equilibrium electric double layer in
realistic salt-free concentrated suspensions including ion size effects. Once
we have solved Eq. 3.11 with boundary conditions Eqs. 3.12 and 3.14,
we calculate the equilibrium surface potential, Ψ0(a), for different particle
charges and volume fractions to show the influence of ion size effects in these
systems.

Fig. 3.1 shows the dimensionless equilibrium electric potential at the
surface of the particle for a wide range of particle volume fractions. Dashed
lines show the results of the FIS+L model. Solid lines present the results
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nmax=22 M;  σ=−40 µC/cm2

Figure 3.1: Dimensionless surface electric potential as a function of particle
volume fraction. Dashed lines show the results of the FIS+L model with
nmax = 22 M. Solid lines present the results for point-like ions. Black
lines: only added counterions H+ (SF). Red lines: added counterions H+

with water dissociation ions (WDC). Blue lines: added counterions different
than H+ with zc = 1 and water dissociation ions (WDNC).
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for point-like ions. Black lines account for the results of ideal salt-free sus-
pensions with only added counterions H+ (SF). Red lines stand for realistic
WDC suspensions with H+ ions as added counterions, and blue lines for
realistic WDNC suspensions with added counterions different than H+ with
zc = 1. The particle surface charge density has been chosen equal to −40
µC/cm2, and the maximum possible ionic concentration due to the excluded
volume effect nmax = 22 M.

We observe in Fig. 3.1 that for high particle concentration the results for
realistic suspensions with water dissociation ions are equal to those for ideal
salt-free suspensions. The reason is that the added counterions completely
mask the influence of water dissociation ions due to its larger concentration
in the concentrated regime. The situation is very different when we approx-
imate the dilute limit. For WDC suspensions with particle volume fraction
φ ≤ 10−3 the surface potential becomes approximately constant, in contrast
with the growth noticed in an ideal salt-free suspension (SF). This behavior
is due to the different sources of H+ counterions: the added counterions
released by the particles and those stemming from water dissociation. The
first ones dominate in the high φ region, whereas the second ones do it
at low particle concentration. The diminution of the surface potential in
comparison with the ideal salt-free case can be explained by the increase
of the counterions concentration inside the cell. For WDNC suspensions
(dotted lines), there is an additional decrease of the surface potential and
a wider influence of water dissociation to higher volume fraction values in
comparison with the case of coincident counterions, WDC (dashed lines).
This is due to the fact that now the added counterions do not participate in
the water dissociation reaction. Therefore, the total number of counterions
is larger than in the WDC case, causing a better screening of the particle
charge and, consequently, diminishing the electric potential at the particle
surface.

Fig. 3.1 also shows that the inclusion of ion size effects (FIS+L model)
always rises the surface electric potential in comparison with the point-like
predictions. The reason relies on the limitation of the ionic concentration in
the neighborhood of the particle, which significantly diminishes the screen-
ing of the particle charge, and consequently, leading to an increment of the
surface potential. We always find this behavior whatever the cases stud-
ied: SF, WDC or WDNC suspensions. When we deal with sufficiently high
charged particles and finite size ions, a region of constant charge density
develops very close to the particle surface with a thickness that is approx-
imately independent of the volume fraction [53, 109]. This is in contrast
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Figure 3.2: Dimensionless surface electric potential as a function of particle
volume fraction. Dashed lines show the results of the FIS+L model with
nmax = 22 M. Solid lines present the results for point-like ions. Black
lines: only added counterions H+ (SF). Red lines: added counterions H+

with water dissociation and atmospheric contamination ions (WDACC).
Blue lines: added counterions different than H+ with zc = 1 and water
dissociation and atmospheric contamination ions (WDACNC).

with the classical point-like problem, where the charge density at the parti-
cle surface is unbounded and can reach unphysical values. The parallelism
that exists between the solid and dashed lines is due to this counterions
condensation region.

Fig. 3.2 shows the dimensionless equilibrium electric potential at the
surface of the particle for a wide range of particle volume fractions. Dashed
lines show the results of the FIS+L model with nmax = 22 M. Solid lines
present the results for point-like ions. Black lines account for the results of
ideal salt-free suspensions with only added counterions H+ (SF). Red lines
stand for realistic WDACC suspensions with H+ ions as added counterions,
and blue lines for realistic WDACNC suspensions with added counterions
different than H+ with zc = 1. In the case of WDACC we observe again that
for highly concentrated suspensions the results coincide with those of ideal
salt-free predictions (SF), due to the added counterions dominance over
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water dissociation and atmospheric contamination ions. In contrast with
that shown in Fig. 3.1 for water dissociation ions, when we also consider
atmospheric CO2 contamination, the plateau in the surface potential now
extends from the very dilute limit to φ = 10−2. In the present case, the
H+ counterions inside of the cell arise from three different mechanisms: the
charging process of the colloidal particle, the water dissociation equilibrium,
and the dissociated protons from atmospheric carbonic acid. Consequently,
there is a great increase of the concentration of counterions that accounts
for the marked reduction of the surface potential in the low volume fraction
region.

For WDACNC suspensions Fig. 3.2 displays an additional decrease of
the surface potential and an extended influence of the atmospheric CO2

contamination for larger volume fractions in comparison with the case of
WDACC suspensions. The explanation is based again on the fact that
the non coincident added counterions do not participate in the water and
carbonic acid dissociation reactions, yielding a large number of counterions
in solution. The resulting screening of the particle charge is enhanced in
comparison with the WDACC case, and therefore, the surface potential
decreases.

Fig. 3.2 shows that the inclusion of ion size effects significantly increases
the surface potential in comparison with point-like calculations. This is
again due to the limitation of the ionic concentration in the neighborhood
of the particle surface, which produces a diminution of the screening of
the particle charge, and consequently, raising the surface potential. We
again find this behavior irrespective of the cases studied: SF, WDACC or
WDACNC suspensions.

Fig. 3.3 displays the dimensionless equilibrium surface electric potential
for a wide range of particle surface charge densities, Fig. 3.3a, and particle
volume fractions, Fig. 3.3b. We repeat this study for different salt-free sus-
pensions, SF (black lines), WDC (red lines) and WDACC (blue lines), with
added counterions coincident with H+, and for the two PL (solid lines) and
FIS+L (dashed lines) models. We take the maximum possible ionic concen-
tration due to the excluded volume effect as nmax = 22 M, corresponding
to a hydrated hydronium ion in solution. We observe in Fig. 3.3a that the
diminution of the surface potential due to realistic considerations is practi-
cally independent of the particle surface charge density, for both point-like
and finite size ions. The results of Fig. 3.3b confirm those from Figs. 3.1
and 3.2, and we can clearly see how the plateaus in the surface potential ex-
tend to larger volume fractions when we consider WDACC instead of WDC
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Figure 3.3: Dimensionless surface electric potential for different values of
particle surface charge density (a) and particle volume fraction (b). Dashed
lines show the results of the FIS+L model with nmax = 22 M. Solid lines
present the results for point-like ions. Black lines: only added counterions
H+ (SF). Red lines: added counterions H+ with water dissociation ions
(WDC). Blue lines: added counterions H+ with water dissociation and at-
mospheric contamination ions (WDACC).

suspensions.

Fig. 3.4 shows the dimensionless equilibrium surface electric potential
for a wide range of particle surface charge densities, Fig. 3.4a, and par-
ticle volume fractions, Fig. 3.4b. We compare the results of the FIS+L
model for different ion sizes (different dashed colored lines) with those for
point-like ions (solid black lines). In all cases we study realistic salt-free sus-
pensions with added counterions different than H+ with zc = 1 and water
dissociation and atmospheric contamination ions (WDACNC). We find that
the surface electric potential increases with the particle charge density, Fig.
3.4a. However, in some cases there is a different behavior in comparison
with the point-like case. Initially, a fast and rough increase of the surface
potential with the surface charge density is observed, which is followed by
a much slower growth at higher surface charge densities for the PL case, or
when the size of the ions is very small. This phenomenon is related to the
classical counterion condensation effect: for high surface charges a layer of
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Figure 3.4: Dimensionless surface electric potential for different values of
particle surface charge density (a) and particle volume fraction (b). Dashed
lines present the results of the FIS+L model. Different colors stand for
different counterion sizes. Solid black lines show the results for point-like
counterions. In all cases we consider salt-free suspensions with added coun-
terions different than H+ with zc = 1 and water dissociation and atmo-
spheric contamination ions (WDACNC).

counterions develops very close to the particle surface [109]. When the ion
size is taken into account, we limit the appearance of the classical conden-
sation effect because when the surface charge is increased, the additional
counterions join the condensate enlarging it. These profiles are similar to
those found by for ideal salt-free suspensions in Section 2.4, but the values
of the surface potential are lower for WDACNC suspensions than for SF
suspensions, as we can see in Fig. 3.2.

On the other hand, the surface electric potential decreases when the
particle volume fraction increases, irrespective of the cases studied: PL or
FIS+L, Fig. 3.4b. When the particle concentration raises, the available
space for the ions inside the cell decreases and, consequently, the screen-
ing of the particle charge augments, thus reducing the value of the surface
potential.

Figs. 3.5 and 3.6 extend the results of Fig. 3.3 for realistic salt-free sus-
pensions with added counterions coincident with H+ and water dissociation
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Figure 3.5: Dimensionless surface potential against the surface charge den-
sity for different particle volume fraction values. Solid lines show the results
for point-like ions. Dashed lines show the results of the FIS+L model with
nmax = 22 M. In all cases we consider salt-free suspensions with added
counterions H+ and water dissociation and atmospheric contamination ions
(WDACC).

and atmospheric contamination ions (WDACC). In them, we compare the
results of the FIS+L model for a given ion size, typical of an hydronium
ion in solution (dashed lines), with those of the PL model (solid lines). Fig.
3.5 presents the dimensionless equilibrium surface electric potential at a
wide range of particle surface charge densities. The different colored lines
correspond to different particle volume fraction. The most remarkable fact
shown in Fig. 3.5 is the large influence of the finite ion size effect even
for moderately low particle surface charge densities. While for point-like
predictions the surface potential hardly increases with surface charge for
moderate to high surface charges at each volume fraction, the FIS+L re-
sults display an outstanding growth for the same conditions, associated with
the lower charge screening ability of the counterions because of their finite
size. This fact will surely have important consequences on the electrokinetic
properties of such particles in concentrated realistic salt-free suspensions,
as has already been shown for dilute suspensions in electrolyte solutions by
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Figure 3.6: Dimensionless surface potential against the particle volume frac-
tion for different surface charge density values. Solid lines show the results
for point-like ions. Dashed lines show the results of the FIS+L model with
nmax = 22 M. In all cases we consider salt-free suspensions with added
counterions H+ and water dissociation and atmospheric contamination ions
(WDACC).

Aranda-Rascón et al. [11, 49].

Finally, Fig. 3.6 shows the dimensionless equilibrium electric potential
at the particle surface against the particle volume fraction. The different
colored lines correspond to different negative particle surface charge den-
sities. As previously stated, the particle surface potential shows an initial
plateau in the dilute region followed by a monotonous decrease with volume
fraction at fixed particle charge density. For the ionic size chosen, the larger
the surface charge, the larger the relative increase of the surface potential
at every volume fraction, due to the enlarging of the counterion condensate
in the neighborhood of the particle surface.

From the results, we think that it is clear that the influence of the finite
ion size effect on the EDL description cannot be neglected for many typical
particle charges and volume fractions, either in an ideal or in a realistic
salt-free suspension.
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3.4 Preliminary experimental results

We have presented a theoretical model to include ion size effects in the elec-
trokinetics of salt-free concentrated suspensions. In this section we show
some preliminary experimental measurements performed in the Laboratory
of Prof. Ángel Delgado (Universidad de Granada, Spain). Both the static
and dynamic electrophoretic mobility of the suspended particles were mea-
sured to test the validity of our model and the influence of ion size effects.

3.4.1 Electrophoretic mobility

As we have seen in Subsection 2.3.1, the electrophoretic mobility can be
defined from the relation between the electrophoretic velocity of the par-
ticle ve and the macroscopic electric field 〈E〉. There are different ways
to determine it experimentally. The most common method is called mi-
croelectrophoresis [79]. It is based on the direct observation, with suitable
magnifying optics, of individual particles in their electrophoretic motion.

This visual technique has been replaced by automatic methods based on
the analysis of the laser light scattered by electrophoresing particles, known
as electrophoretic light-scattering methods [79]. In general, their principle
of operation is as follows: due to the Doppler shift of the scattered light,
a beat pattern is produced in the detection photomultiplier, the frequency
of which can be related to the electrophoretic velocity. Such a frequency
can be measured by means of a spectrum analyzer or by analysis of the
correlation function of the scattered light.

Using Malvern’s Zetasizer Nano [113], which is based on an electrophore-
tic light-scattering method, we have measured the electrophoretic mobility
of highly charged sulfonated polystyrene latexes. These latexes were syn-
thesized by Ikerlat Polymers [114]. The particle surface charge and particle
radius values given by the manufacturer were σ = −31.67 µC/cm2 and
a = 38 nm, respectively. The charged particles were suspended in a salt-
free medium with H+ ions as added counterions and originally at a particle
volume fraction φ = 0.206. From the initial suspension, we prepared dilu-
tions at φ = 10−2, 5 · 10−3, 10−3, 5 · 10−4 and 10−4 using deionized and
filtered water.

Fig. 3.7 shows in black dots the measured values of the scaled elec-
trophoretic mobility for different volume fractions. For each φ, three vol-
umes were taken from the suspension and each one measured three times.
The black dots are the average of these measurements. Due to technique
limitations related with the light scattered from the particles, no measure-
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Figure 3.7: Scaled electrophoretic mobility of the particles as a function
of volume fraction. • points stand for experimental measurements. Solid
and dashed red lines show the results of PL model and FIS+L model with
nmaxc = 22 M, respectively, in ideal salt-free suspensions with only added
counterions H+. Blue solid line stand for the results of PL model in realistic
salt-free suspensions with added counterions H+ and water dissociation and
atmospheric contamination ions (WDACC) from Ref. [71].

ments are presented in the range of high and very low φ. From the results,
it is possible to conclude that the electrophoretic mobility takes a constant
value for such volume fractions (plateau in the Figure) that corresponds
with the dilute limit.

We compare these measurements with theoretical calculations for ideal
salt-free suspensions made with PL and FIS+L models, solid and dashed
red lines, respectively. We note that both model predict the same results be-
cause of the low particle volume fraction values, despite of the high particle
surface charge. The only small difference appears when φ increases to the
concentrate region. We observe that the theoretical results do not match
with the experimental measurements. Both models predict an almost linear
increment of the mobility when decreasing the volume fraction, in contrast
with the plateau observed with black dots in Fig. 3.7. The reason is that we
do not consider water dissociation ions and atmospheric CO2 contamination
ions in ideal salt-free suspensions. As we have seen in Section 3.3, these ions
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dominates in the low φ region.

To deal with that, we show in the blue line the results of the PL model for
realistic salt-free suspensions with added counterions H+ and water dissoci-
ation and atmospheric contamination ions (WDACC) from Ref. [71]. There
are no results of the FIS+L model for realistic salt-free suspensions because
only the equilibrium EDL has been studied in these systems including ion
size effects. When these extra ions are considered we get closer to experi-
mental conditions because the suspension had water as liquid medium and
was open to the atmosphere. We observe that now the theoretical results
present a plateau in the mobility for low volume fractions. The diminution
of the mobility in comparison with the ideal salt-free case can be explained
by the increase of the counterions concentration inside the cell. This theo-
retical plateau is slightly over the experimental one, but it is important to
note that there are no adjustable parameters in the model. The use of a
renormalized charge instead of the bare charge would probably improve the
matching.

It is not possible to measure the mobility for high particle volume frac-
tions with the device used because almost all the light is absorbed by the
suspension and consequently no scattered light is detected. This is the rea-
son because we are not able to check experimentally the diminution of the
mobility for high φ. Other experimental techniques, like super-heterodyne
light scattering ones, are able to measure in the concentrated region and
have found this diminution [61,63].

This experiment shows that it is necessary to consider realistic salt-
free suspensions to get closer to experimental conditions, specially for low
particle volume fractions.

3.4.2 Dynamic electrophoretic mobility

When the external electric field applied to the suspension is oscillating,
〈E〉e−iωt, our concern relies in the dynamic electrophoretic mobility. As we
have seen in Section 2.6, the value of the dynamic mobility for ω = 0 coin-
cides with that of static electric fields. When the frequency of the external
electric field increases, this value is modified because of the relaxation of
the electromigration and diffusion processes developed around the particle.
We have experimentally measured the dynamic mobility of the suspended
particles using the Electrokinetic Sonic Amplitude technique. This is an
electroacoustic technique based on the determination of the amplitude and
phase of the sound wave generated in the colloidal suspension by application
of an oscillating field [57,115].
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The device used is Colloidal Dynamics’s Acoustosizer II [116], which
operates in the frequency interval between 1 and 18 MHz. We have measured
the dynamic mobility of highly charged sulfonated polystyrene latexes, σ =
−31.67 µC/cm2 and a = 38 nm, synthesized by Ikerlat Polymers [114]. The
charged particles were suspended in a salt-free medium with H+ ions as
added counterions and originally at a particle volume fraction φ = 0.206.
From the initial suspension, we prepared dilutions at φ = 0.152, 0.097 and
0.049 using deionized and filtered water.

Fig. 3.8 presents in colored dots the measurements of the modulus of the
scaled dynamic mobility as a function of frequency. Different colors stand
for different volume fractions. For each φ, two volumes were taken from the
suspension and each one measured four times. The dots are the average
of these measurements. From the results, we observe that the dynamic
mobility takes a constant value for the initial frequencies measured, and
starts to rise for the last measurements. These behaviors can be associated
with the common low frequency plateau and with the beginning of the
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Figure 3.8: Modulus of the scaled dynamic electrophoretic mobility of the
particles as a function of frequency. • points stand for experimental mea-
surements. Solid and dashed lines show the results of PL model and FIS+L
model with nmaxc = 22 M, respectively. Different colors stand for different
particle volume fractions.
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MWO relaxation, respectively. We note that the frequency of the MWO
relaxation is lower the lower the volume fraction, and that the value of the
plateau increases when φ decreases.

We compare these measurements with theoretical calculations for ideal
salt-free suspensions made with PL and FIS+L models, solid and dashed
colored lines, respectively. There are no adjustable parameters in the mod-
els. We use as input the bare charge of the particle, σ = −31.67 µC/cm2,
and for the FIS+L model we also consider hydrated H+ counterions with
nmaxc = 22 M. The theoretical results match qualitatively with the experi-
mental measurements. In general, we find that the measured low frequency
plateaus are higher than the predicted ones and that the MWO relaxations
occur one decade before in frequency. Curiously, when φ decreases, there is
a better agreement for the low frequency plateau value but the differences
with the MWO relaxation frequency increase. We find quantitative differ-
ences between the predictions of both theoretical models. We observe that
the FIS+L model predicts a higher value for the low frequency plateau as
well as a lower relaxation frequency, specially in the high frequency region
not shown in Fig. 3.8, than those predicted by the PL model. These dif-
ferences diminish when the volume fraction also does it. In all the cases
the predictions of the FIS+L model are closer to the experiments for these
highly charged particles.

Figs. 3.9 and 3.10 show again the experimental results of the modulus of
the dynamic mobility for φ = 0.206 in black dots. We compare the results
with the predictions of the PL and FIS+L models, solid and dashed lines,
respectively. In Fig. 3.9 we fix nmaxc and perform the calculations for differ-
ent particle surface charges. We observe that the diminution of the particle
charge leads to a better agreement between experiment and theory in both
the low frequency plateau value and MWO relaxation frequency. This agree-
ment is better again for the FIS+L model. The aim of these calculations
is that the electrokinetic charge is usually lower than the bare charge. Al-
though the agreement is promising, we find that the perfect match would be
obtained with unrealistic values of σ. In Fig. 3.10 we fix the particle charge
and change the ion size. The values nmaxc = 22, 5 and 2.5 M correspond to
ionic diameters of 2R = 0.425, 0.693 and 0.873 nm, respectively. As ion-ion
interactions are underestimated by the FIS+L model, the consideration of
larger ion sizes would enhance them indirectly. Even though we have again
a great qualitative agreement that also improves quantitatively for higher
ion sizes, we are not able to match the low frequency plateau and the MWO
relaxation frequency at the same time.
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Figure 3.9: Modulus of the scaled dynamic electrophoretic mobility of the
particles as a function of frequency. • points stand for experimental mea-
surements. Solid and dashed lines show the results of PL model and FIS+L
model with nmaxc = 22 M, respectively. Different colors stand for different
particle surface charge densities.
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Summarizing, we have found a good qualitative agreement in the case
of the dynamic mobility that improves quantitatively in all the cases when
ion size effects are considered for the highly charged colloidal particles used.

Works in progress concerning realistic salt-free concentrated suspensions
are expected to clarify this issue, and will be our major concern in the
next future. It seems that charge transport processes in real suspensions
cannot follow the oscillating electric field at frequencies where the theoretical
transport mechanism do not suffer appreciable lag with the field. Although
a larger particle radius could explain lower MWO relaxation frequencies
in agreement with experimental results, there is no evidence of particle
aggregation at such high particle charges. A more extensive experimental
study has to be done to explain the origin of such discrepancies, by changing
particle size, charge density and volume fraction, and specially by alternative
estimation of the electrokinetic or effective particle charge in order to be
compared with the bare one.



Chapter 4

Conclusions

By using a spherical cell approach we have analyzed the influence of finite
ion size effects in the response of a salt-free concentrated suspension of
spherical particles to static and oscillating electric fields. We have derived
a mean-field electrokinetic model that accounts for the excluded volume of
the counterions.

We have seen that the inclusion of ion size effects significantly modifies
the ionic condensation region near the particle surface for moderate to high
particle charges. This produces a change in the convective fluid flow and
in the counterions fluxes, as well as a remarkable diminution of the elec-
trophoretic retardation force acting on the particle when an external static
electric field is applied. In the common case of H+ counterions, this leads
to an increment of both the electrophoretic mobility and the suspension
conductivity in comparison with the point-like case. This increment grows
with ion size and particle charge.

In the frequency domain, we have studied the dynamic electrophoretic
mobility of the particles and the dielectric response of the suspension. For
this purpose we have performed a comparative study of the different physical
mechanisms, pure inertia response and charge polarization relaxations, to
know how they interplay in giving the complete response. This study has
allowed us to characterize the relative importance and relaxation frequencies
of each mechanism separately. In the discussion of the numerical results
two different MWO relaxations have been successfully associated with the
relaxations of the different ionic processes that take place in the diffuse
and condensate regions of the EDL. Furthermore, the inclusion of ion size
effects leads to an overall increment of the dynamic mobility and relative
permittivity in comparison with the point-like case. The enhancement of the
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MWO relaxation for moderate to high particle charges, which is associated
with the counterions condensation layer, has yielded a remarkable increment
of the mobility for such frequencies. In addition, we have found that this
increment of the mobility grows with ion size and particle charge. Besides,
we have observed a shift in the MWO relaxation of the condensate to larger
frequencies with ion size.

In an attempt to get closer to experimental systems, we have also de-
rived a model to include ion size effects in the equilibrium EDL of spherical
particles in realistic salt-free concentrated suspensions. These realistic sus-
pensions include water dissociation ions and those generated by atmospheric
carbon dioxide contamination in addition to the added counterions released
by the particles to the solution. The numerical results have shown that the
influence of the water dissociation in aqueous salt-free suspensions has to be
considered for volume fractions lower than 10−2, whereas the atmospheric
contamination, if the suspensions are in contact with air, is significant in
the region of φ < 10−1. Moreover, they have demonstrated that it is im-
portant to distinguish whether the added counterions coincide or not with
one of the ionic species arising from the dissociation of water and carbonic
acid. The results have also shown that the finite ion size effect has to be
taken into account for moderate to high particle charges at every particle
volume fraction. This equilibrium model will be used to develop nonequilib-
rium models of the response of realistic salt-free concentrated suspensions
to external electric fields including ion size effects.

To test the validity of the electrokinetic model presented in this the-
sis, we have made a preliminary set of experiments to measure the static
and dynamic mobility of highly charged sulfonated polystyrene latexes in
salt-free concentrated suspensions. We have found a good qualitative agree-
ment between theory and experiment in the case of the dynamic mobility
that improves in all the cases when ion size effects are considered. For the
measurements of the static electrophoretic mobility at low volume fractions,
we have been forced to consider realistic salt-free suspensions to find such
agreement. We consider that it would be necessary to improve these exper-
iments by performing a systematic study with an established protocol. In
particular, it would be interesting to repeat these experiments with other
particle charges and sizes, and also with other ionic species, like K+ or
Na+, instead of H+ counterions. Dielectric spectroscopy measurements of
the same suspensions will also add useful information about the weight of
ion size effects in the overall electrokinetic response.



Appendix A

Invariance of MPB equation

In this Appendix we demonstrate that the new modified Poisson-Boltzmann
equation (MPB), Eq. 2.13, is invariant under changes in the origin of the
electric potential, as it must be according to basic physical grounds. This is
not a trivial question, because the classical Poisson-Boltzmann equation for
the low particle concentration case in electrolyte solutions is not invariant
under changes in the origin of the electric potential: it is only valid when
we take the potential zero at an infinite distance from the particle surface
(bulk). When we study salt-free and/or concentrated suspensions, we do
not have a bulk, because the electroneutrality is achieved at the outer sur-
face of the cell, and we have to take care about the correct invariance of
the equation. In this case we do not have an “infinity” to set the origin of
the potential and we have also an unknown coefficient bc that must be cor-
rectly defined to account for the latter statements. The Poisson-Boltzmann
description for the salt-free case with point-like counterions made by Ruiz-
Reina and Carrique [70] satisfies the above-mentioned invariance require-
ment.

As we said before, the unknown coefficient bc, that appears in the MPB
equation, Eq. 2.13, represents the ionic concentration where the equilibrium
electric potential is zero. Our choice along this work has been Ψ0(b) = 0.
According to this definition and using Eq. 2.11, we can see that n0

c(b) = bc.
The potential difference between two points r, r1 does not depend on

the origin of potentials, Fig. A.1,

Ψ0(r)−Ψ0(r1) = Ψ0∗(r)−Ψ0∗(r1) (A.1)

where the magnitudes without asterisks refer to the origin Ψ0(b) = 0 and
those with asterisks, to an arbitrary origin, Ψ0∗(r1) = 0, for the electric
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Figure A.1: Changes in the origin of the electric potential.

potential. The relationship between the potentials referred to both choices
of electric potential origins is

Ψ0(r) = Ψ0∗(r) + Ψ0(r1) (A.2)

Substituting the last expression in the MPB equation, Eq. 2.13, we
obtain
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After a little algebra, and defining
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it yields
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where we have defined

n0∗
c (r) =

b∗c exp
(
− zceΨ0∗(r)

kBT

)
1 + b∗c

nmax
c

[
exp

(
− zceΨ0∗(r)

kBT

)
− 1
] (A.6)

Eq. A.5 shows that Ψ0∗(r) satisfies the MPB equation, Eq. 2.13, with a
different coefficient b∗c . Let’s finally check that the concentration of counte-
rions, n0∗

c (r), is the same irrespective of the origin of the electric potential:
n0∗
c (r) = n0

c(r), in spite of the different values of the unknown coefficients
bc and b∗c .

By inserting Eq. A.4 in Eq. A.6, we obtain

n0∗
c (r) =

bc(
1− bc

bmax
c

)
exp

(
− zceΨ0(r1)

kBT

)
+ bc

bmax
c

×
exp

(
− zceΨ0∗(r)

kBT

)
1 + bc

nmax
c

[
exp

(
− zceΨ0∗(r)

kBT

)
− 1
]

(
1− bc

bmax
c

)
exp

(
− zceΨ0(r1)

kBT

)
+ bc

bmax
c

=
bc exp

(
− zceΨ0(r)

kBT

)
1 + bc

nmax
c

[
exp

(
− zceΨ0(r)

kBT

)
− 1
] = n0

c(r) (A.7)

as we wanted to demonstrate.
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Appendix B

Electrocinética de
suspensiones concentradas
salt-free con tamaño iónico
finito

Introducción

En los últimos años se ha producido un renovado interés por la electrofore-
sis. Este interés es en parte debido a avances recientes en nanociencia que
hacen posible la separación de macromoléculas por tamaño o carga. Por
ejemplo, moléculas de ADN o protéınas en suspensión son dirigidas y sepa-
radas mediante campos eléctricos ac o dc [1–3]. Otra aplicación fundamental
en el campo de la nanociencia es el uso de nanopart́ıculas de oro para la
administración de fármacos o para la detección de células canceŕıgenas [4,5].
Se ha encontrado que las medidas de la movilidad electroforética de estas
nanopart́ıculas de oro es útil para caracterizar su funcionalización super-
ficial [6]. Es un hecho conocido que las part́ıculas adquieren carga al ser
suspendidas en solución junto con microiones. En estas condiciones, se
forma una estructura de doble capa eléctrica alrededor de la part́ıcula [7–9].
La movilidad electroforética de una part́ıcula en suspensión no depende
únicamente de la carga de dicha part́ıcula o de la viscosidad del medio, sino
también de la configuración de la doble capa eléctrica.

La mayoŕıa de los modelos teóricos para la doble capa eléctrica están
basados en la ecuación de Poisson-Boltzmann, que está basada en una apro-
ximación de campo medio que considera iones puntuales en solución. Esta
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teoŕıa deja de funcionar cuando la acumulación de iones es significativa y
cuando la repulsión por tamaño iónico y las correlaciones son importantes.
Algunos autores han mostrado que la consideración de efectos de tamaño
iónico finito permite la acumulación de iones en las proximidades de la su-
perficie de la part́ıcula [10]. Esta redistribución de iones modifica la doble
capa eléctrica alrededor de la part́ıcula y por tanto su movilidad electro-
forética cuando se aplica un campo eléctrico [11–14].

Podemos encontrar en la literatura distintos estudios que tratan efec-
tos de tamaño iónico finito. Algunos de ellos discuten descripciones mi-
croscópicas de las correlaciones ión-ión [15–30]. Estas aproximaciones están
restringidas fundamentalmente a condiciones de equilibrio, pero son capaces
de predecir fenómenos importantes como la inversión de carga [31,32]. Otros
estudios están basados en descripciones macroscópicas que consideran inter-
acciones promedio mediante aproximaciones de campo medio [10–14,33–55].
En muchos de estos trabajos, el tamaño iónico es considerado a través de
una modificación en el coeficiente de actividad de los iones en el potencial
electroqúımico, o incorporando contribuciones entrópicas relacionadas con
el volumen excluido por los iones. Al comparar las predicciones de las apro-
ximaciones macroscópicas con resultados de simulación, se ha encontrado
que éstas funcionan razonablemente bien con electrolitos monovalentes en
condiciones de alta carga de part́ıcula y/o gran tamaño iónico [15].

La mayoŕıa de los trabajos en electrocinética tienen en cuenta suspen-
siones con baja concentración de part́ıculas, pese a que hoy en d́ıa es el
régimen concentrado el que atrae mayor atención debido a sus aplicaciones
prácticas [56]. Las interacciones electrohidrodinámicas part́ıcula-part́ıcula
aumentan con la concentración de part́ıculas, lo que hace que estos sistemas
concentrados sean más complejos de estudiar [57,58]. Por otra parte, los sis-
temas con baja concentración de sal muestran un menor apantallamiento de
las interacciones electrostáticas part́ıcula-part́ıcula de tipo repulsivo, lo que
favorece la generación de cristales coloidales o vidrios [59]. Llamamos sus-
pensiones salt-free ideales, o suspensiones salt-free, a aquellas compuestas
únicamente por part́ıculas cargadas y por sus contracargas iónicas (cono-
cidas como contraiones añadidos). El interés en estos sistemas ha aumen-
tado en los últimos años desde los puntos de vista teórico y experimen-
tal [14,53–55,60–76].

El objetivo de esta Tesis es analizar la influencia del tamaño iónico
finito en la respuesta de una suspensión concentrada salt-free a campos
eléctricos estáticos y oscilantes. Estudiaremos especialmente la movilidad
electroforética estática y dinámica de las part́ıculas y la conductividad y la
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respuesta dieléctrica de la suspensión, aśı como la doble capa eléctrica de
equilibrio [14, 53, 54]. Para acercarnos a condiciones experimentales, discu-
tiremos también la doble capa eléctrica de equilibrio en suspensiones con-
centradas salt-free realistas. Estas suspensiones realistas incluyen a los iones
procedentes de la disociación del agua y a los generados por contaminación
por CO2 atmosférico, además de los contraiones añadidos liberados por las
part́ıculas a la solución. Para comprobar la validez de estos modelos, com-
pararemos algunos de estos cálculos con resultados experimentales prelimi-
nares de la movilidad estática y dinámica de part́ıculas coloidales altamente
cargadas.

Modelo

Estudiamos las propiedades macroscópicas de la suspensión mediante una
aproximación de celda esférica [101,105]. Dichas propiedades son obtenidas
mediante promedios apropriados de propiedades locales en una celda repre-
sentativa. En esta aproximación, una part́ıcula esférica de radio a es rodeada
por una capa concéntrica de medio ĺıquido, teniendo un radio externo b de
forma que la razón del volumen part́ıcula/celda en la celda es igual a la
fracción de volumen de part́ıcula en la suspensión completa, Fig. 1.2, es
decir

φ =
(a
b

)3
(B.1)

En esta aproximación simulamos las interacciones hidrodinámicas y eléc-
tricas entre part́ıculas en la suspensión mediante la correcta especificación
de condiciones de contorno en la frontera externa de la celda.

Consideremos una part́ıcula cargada con densidad superficial de carga
σ inmersa en un medio salt-free ideal con permitividad relativa εrs y con
la única presencia de sus contraiones añadidos de valencia zc. Tenemos en
cuenta el tamaño finito de los contraiones al tratarlos como esferas de radio
R con una carga puntual en su centro. Al aplicar al sistema un campo
eléctrico oscilante E e−iωt, la part́ıcula se mueve con una velocidad elec-
troforética dinámica vee

−iωt. Los ejes del sistema de coordenadas esférico
están fijos en en el centro de la part́ıcula, con el eje polar θ = 0 paralelo
al campo eléctrico. La solución del problema en un instante t requiere del
conocimiento en cada punto r del sistema del potencial eléctrico, Ψ(r, t),
de la concentración iónica, nc(r, t), de su velocidad, vc(r, t), de la velocidad
del fluido, v(r, t), y de la presión, P (r, t). Las ecuaciones electrocinéticas
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fundamentales que conectan estas magnitudes son [7, 103]:

∇2Ψ(r, t) = − zce

ε0εrs
nc(r, t) (B.2)

η∇2v(r, t)−∇P (r, t)− zcenc(r, t)∇Ψ(r, t) = ρs
∂

∂t
[v(r, t) +ve e−iωt] (B.3)

∇ · [nc(r, t)vc(r, t)] = − ∂

∂t
[nc(r, t)] (B.4)

nc(r, t)vc(r, t) = nc(r, t)v(r, t)− 1

λc
nc(r, t)∇µc(r, t) (B.5)

∇ · v(r, t) = 0 (B.6)

Estamos interesados en el estudio de la respuesta lineal del sistema a un
campo eléctrico y por tanto aplicamos el siguiente esquema de perturbación:
escribimos cada cantidad X como la suma de su valor en el equilibrio, X0,
más un término de perturbación, δX, que depende linealmente con el campo
multiplicado por el término e−iωt.

Introducimos el tamaño finito de los contraiones incluyendo un nuevo
término, la entroṕıa de las moléculas del solvente, en la enerǵıa libre de la
suspensión [38,53]. Teniendo en cuenta una aproximación de campo medio,
podemos escribir la enerǵıa libre total del sistema, F = U−TS, en términos
del potencial eléctrico de equilibrio y de la concentración de contraiones
n0
c(r). Las distintas contribuciones de enerǵıa interna configuracional, U , y

entrópica, −TS, son

U =

∫
dr

[
− ε0εrs

2
|∇Ψ0(r)|2 + zcen

0
c(r)Ψ0(r)− µ0

cn
0
c(r)

]
(B.7)

− TS = kBTn
max
c

∫
dr

[
n0
c(r)

nmaxc

ln

(
n0
c(r)

nmaxc

)
+

(
1− n0

c(r)

nmaxc

)
ln

(
1− n0

c(r)

nmaxc

)]
(B.8)

donde nmaxc es la máxima concentración posible de contraiones debido al
efecto de volumen exclúıdo, definida como nmaxc = V −1, siendo V el volumen
promedio ocupado por un ión en solución. El segundo término en la Ec.
B.8 tiene en cuenta el tamaño iónico finito y modifica la ecuación clásica de
Poisson-Boltzmann [38].
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Obtenemos la nueva concentración de contraiones de equilibrio mini-
mizando la enerǵıa libre F = U − TS con respecto a n0

c(r)

n0
c(r) =

bc exp
(
− zceΨ0(r)

kBT

)
1 + bc

nmax
c

[
exp

(
− zceΨ0(r)

kBT

)
− 1
] (B.9)

donde bc es un coeficiente desconocido que representa el valor de la concen-
tración iónica donde tomamos potencial eléctrico nulo. Usamos la condición
de electroneutralidad de la celda para obtener este coeficiente.

En el equilibrio no hay campo externo aplicado y la part́ıcula es rodeada
por una distribución simétrica y esférica de carga. Aplicando esta simetŕıa
e introduciendo el valor de n0

c(r) en la ecuación de Poisson, obtenemos una
ecuación de Poisson-Boltzmann modificada para el potencial eléctrico de
equilibrio

d2Ψ0(r)

dr2
+

2

r

dΨ0(r)

dr
= − zce

ε0εrs

bc exp
(
− zceΨ0(r)

kBT

)
1 + bc

nmax
c

[
exp

(
− zceΨ0(r)

kBT

)
− 1
] (B.10)

Para el caso de suspensiones salt-free realistas, la Ec. B.10 se transforma
en

d2Ψ0(r)

dr2
+

2

r

dΨ0(r)

dr

= − e

ε0εrs

N∑
i=1

zibi exp

(
−zieΨ

0(r)

kBT

)

1 +
N∑
i=1

bi
nmax

[
exp

(
−zieΨ

0(r)

kBT

)
− 1

] (B.11)

donde los distintos coeficientes bi representan las concentraciones de las
distintas especies iónicas (contraiones añadidos, e iones procedentes de la
disociación del agua y de la contaminación por CO2 atmosférico) donde
tomamos Ψ0(r) = 0. Puede encontrarse más información sobre el cálculo
de estos coeficientes en la Sección 3.1.1.

Para el cálculo de los términos fuera del equilibrio en suspensiones salt-
free ideales, y debido a la simetŕıa del problema, usamos las funciones h(r),
φc(r), Y (r) [104]

v(r) = (vr, vθ, vϕ) =

(
−2

r
h(r)E cos θ,

1

r

d

dr
(rh(r))E sin θ, 0

)
(B.12)
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δµc(r) = −zceφc(r)E cos θ (B.13)

δΨ(r) = −Y (r)E cos θ (B.14)

con E = |E|. Sustituyendo el esquema de perturbación previo en las ecua-
ciones electrocinéticas, Ecs. B.2 − B.6, despreciando los términos de pertur-
bación no lineales, y teniendo en cuenta la simetŕıa del problema, obtenemos

L(Lh(r)) +
iωρs
η
Lh(r) = − zce

2

kBTηr

×
(

dΨ0(r)

dr

)
n0
c(r)

(
φc(r)−

n0
c(r)

nmaxc

Y (r)

)
(B.15)

Lφc(r) +
iωλc
kBT

(φc(r)− Y (r)) =
e

kBT

(
dΨ0(r)

dr

)
×
(

1− n0
c(r)

nmaxc

)(
zc

dφc(r)

dr
− 2λc

e

h(r)

r

)
(B.16)

LY (r) = −z
2
c e

2n0
c(r)

ε0εrskBT
(φc(r)− Y (r)) (B.17)

donde el operador L se define como

L ≡ d2

dr2
+

2

r

d

dr
− 2

r2
(B.18)

Debido al tamaño finito de los contraiones, éstos no pueden aproximarse
a la superficie de la part́ıcula a una distancia inferior a un radio iónico.
Tomando dicho radio como su radio de hidratación, R, obtenemos que la
región entre la superficie de la part́ıcula, r = a, y la superficie esférica r =
a + R es libre de carga. Con esta consideración, resolvemos las ecuaciones
electrocinéticas, Ecs. B.10, B.15 − B.17, únicamente entre r = a + R y
r = b. Para la región entre r = a y r = a+R, las ecuaciones a resolver son la
ecuación de Laplace para el potencial eléctrico y las ecuaciones L(Lh(r)) =
0, φc(r) = 0, y LY (r) = 0 para el resto de funciones esféricas. Llamamos
modelo FIS+L a este modelo electrocinético completo que incluye efectos de
tamaño iónico finito y que considera una distancia mı́nima de aproximación
de los contraiones a la superficie de la part́ıcula.

Las condiciones de contorno necesarias para resolver las ecuaciones elec-
trocinéticas son las siguientes. En la superficie de la part́ıcula aplicamos
la continuidad del potencial eléctrico, la discontinuidad de la componente
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normal del vector desplazamiento, la condición de no deslizamiento para
el fluido y la impenetrabilidad de los iones a través de la superficie de
la part́ıcula. En la superficie externa de la celda usamos condiciones de
contorno de Kuwabara para la velocidad del fluido y de Shilov-Zharkikh-
Borkovskaya para el potencial eléctrico perturbado. La consideración de
una distancia mı́nima de aproximación de los contraiones a la superficie de
la part́ıcula implica que haya que aplicar la continuidad de la presión y
de las componentes normales y tangenciales de la velocidad del fluido y de
la vorticidad en la superficie esférica r = a + R. Por último, también es
necesario el cálculo de la fuerza neta que actúa sobre la part́ıcula o sobre la
celda [68,104]. Puede encontrarse más información sobre las condiciones de
contorno en la Sección 2.1.2.

Método y cantidades calculadas

Método

En este trabajo discutimos los resultados del modelo electrocinético FIS+L.
Para mostrar el efecto del tamaño iónico finito en suspensiones salt-free,
comparamos los resultados del modelo con predicciones estándar para iones
puntuales, modelo PL [67–70]. Las ecuaciones electrocinéticas junto con
sus condiciones de contorno forman un problema de valores de frontera que
puede resolverse numéricamente usando la rutina de MATLAB bvp4c [107].

Consideramos también distintas suspensiones concentradas salt-free re-
alistas: suspensiones con contraiones añadidos coincidentes, WDC (léase
como Water Dissociation Coincident), o no, WDNC (Water Dissociation
Non-Coincident), con los iones producidos por la disociación del agua, i.e.,
H+ o OH–; y suspensiones con contraiones añadidos coincidentes, WDACC
(léase como Water Dissociation Atmospheric Contamination Coincident),
o no, WDACNC (Water Dissociation Atmospheric Contamination Non-
Coincident), con los iones producidos por la disociación del agua o por
la contaminación con CO2 atmosférico, i.e., H+, OH–, HCO–

3. Compara-
mos también estos resultados con los del modelo FIS+L para suspensiones
salt-free ideales con sólo contraiones añadidos (SF).

Por motivos de simplicidad, asumimos que el volumen promedio ocu-
pado por un contraión es V = (2R)3, donde 2R es el diámetro efectivo
del contraión. Con esta consideración, la máxima concentración posible de
contraiones debido al efecto de volumen excluido es nmaxc = (2R)−3. Esto
se corresponde con un empaquetamiento cúbico simple (52% de empaque-
tamiento). En concentraciones molares, los valores usados en los cálculos,



98 APPENDIX B. RESUMEN EN ESPAÑOL

nmaxc = 22, 4 y 1.7 M, equivalen aproximadamente a diámetros efectivos
de contraión 2R = 0.425, 0.75 y 1 nm, respectivamente. Estos valores
son diámetros iónicos hidratados t́ıpicos [108]. En la Tabla 2.1 (véase
página 26) se muestran los parámetros usados en los cálculos realizados.
Los parámetros escogidos se corresponden con contraiones H+ hidratados,
que se encuentran comúnmente en muchas condiciones experimentales con
suspensiones salt-free de, por ejemplo, part́ıculas sulfonatadas cargadas ne-
gativamente, debido al proceso de limpieza de la suspensión con resinas
intercambiadoras de protones.

Cantidades calculadas

La movilidad electroforética dinámica µ de una part́ıcula esférica en una
suspensión coloidal concentrada puede definirse a partir de la relación entre
la velocidad electroforética de la part́ıcula y el campo eléctrico macroscópico.
De acuerdo con las Refs. [14, 68] puede calcularse como

µ =
2h(b)

b
(B.19)

Obtenemos la movilidad dinámica adimensional a partir de

µ∗ =
3ηe

2ε0εrskBT
µ (B.20)

La conductividad compleja, K, de la suspensión se define usualmente en
términos de los promedios de la densidad de corriente eléctrica local y del
campo eléctrico en el volumen de una celda representativa de la suspensión
completa. Siguiendo un procedimiento similar al descrito en las Refs. [14,69]
obtenemos

K =

(
z2
c e

2

λc

dφc(r)

dr

∣∣∣∣
r=b

− 2h(b)

b
zce

)
n0
c(b)− iωεrsε0

dY (r)

dr

∣∣∣∣
r=b

(B.21)

Basta con tomar ω = 0 en la ecuación anterior para obtener una ex-
presión para el cálculo de la conductividad dc de la suspensión. A partir
de la conductividad compleja, las partes real ε′r(ω) e imaginaria ε′′r(ω) de la
permitividad relativa compleja de la suspensión εr(ω) se calculan como

K(ω) = K(ω = 0)− iωε0εr(ω) = K(ω = 0) + ωε0ε
′′
r(ω)− iωε0ε′r(ω) (B.22)

ε′r(ω) = − Im[K(ω)]

ωε0
(B.23)

ε′′r(ω) =
Re[K(ω)]−K(ω = 0)

ωε0
(B.24)
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Resultados y discusión

Mediante el uso de una aproximación de celda esférica, analizamos el efecto
del tamaño iónico finito en la respuesta de una suspensión concentrada salt-
free de part́ıculas esféricas a campos eléctricos estáticos y oscilantes.

Suspensiones salt-free: doble capa eléctrica de equilibrio

La Fig. 2.1 (véase página 29) muestra el potencial eléctrico adimensional
(a) y la concentración de contraiones (b) a lo largo de la celda. Podemos
ver en la Fig. 2.1a que la inclusión del tamaño iónico finito siempre au-
menta el valor del potencial eléctrico en la superficie en comparación con
la predicción para iones puntuales, valor que se recupera en el ĺımite de
contraiones puntuales (nmaxc = ∞). Esto se debe que al limitar la concen-
tración de contraiones en la vecindad de la part́ıcula, disminuimos de forma
significativa el apantallamiento a la carga de la part́ıcula, lo que aumenta
el potencial en la superficie. También podemos ver en la Fig. 2.1b cómo
la inclusión de efectos de tamaño iónico crea regiones de saturación que se
corresponden con “plateaus” en la concentración de contraiones. Estas re-
giones de saturación, y por tanto también el potencial en la superficie, son
mayores cuanto mayor es el tamaño del ión, o análogamente cuanto menor
es nmaxc .

En la Fig. 2.3 (véase página 31) se representa el potencial eléctrico adi-
mensional en la superficie de la part́ıcula para distintos valores de carga
de part́ıcula (a) y de fracción de volumen de part́ıcula (b). Encontramos
que el potencial eléctrico en la superficie crece con la densidad de carga de
part́ıcula, Fig. 2.3a. Sin embargo, en algunos casos apreciamos un compor-
tamiento diferente al que se encuentra con iones puntuales: inicialmente, el
potencial en la superficie crece de forma rápida con la densidad de carga;
esta tendencia es seguida por un crecimiento mucho más lento para valores
más altos de carga de part́ıcula en el caso PL o cuando el tamaño de los
contraiones es pequeño. Este fenómeno está relacionado con el efecto clásico
de condensación de contraiones: para altas cargas de part́ıcula se forma una
capa de contraiones junto a la superficie de la part́ıcula [64, 109]. Cuando
tenemos en cuenta el tamaño iónico finito limitamos la aparición del efecto
clásico de condensación. Esto se debe a que cuando aumentamos la carga
de la part́ıcula los contraiones adicionales se unen al condensado y lo agran-
dan. Este hecho explica el aumento del potencial eléctrico en la superficie
que apreciamos para altos valores de tamaño de ión y densidad superficial
de carga de part́ıcula.
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Como hemos visto, la inclusión de efectos de tamaño iónico finito mo-
difica de forma significativa la región de condensación iónica próxima a la
superficie de la part́ıcula para cargas moderadas y altas.

Suspensiones salt-free: electrocinética dc

El comportamiento clásico de la movilidad electroforética de part́ıculas
esféricas en una suspensión concentrada salt-free considerando iones pun-
tuales, modelo PL, es el siguiente: para cargas superficiales de part́ıcula
bajas, se aprecia un gran aumento de la movilidad electroforética con la
carga superficial. Cuando la fracción de volumen de part́ıcula disminuye,
este aumento es aún mayor. Este comportamiento sigue una ley de tipo
Hückel que conecta linealmente ambas magnitudes. Cuando aumentamos
la carga de la part́ıcula, la movilidad electroforética alcanza un “plateau” y
se vuelve prácticamente independiente de la carga de part́ıcula. Este hecho
está asociado con la generación de una capa de condensación de contraiones
junto a la superficie de la part́ıcula [64, 109]. Entre estos reǵımenes ob-
servamos un máximo seguido de una pequeña disminución de la movilidad
electroforética que vaŕıa con la fracción de volumen. Además, encontramos
que la movilidad electroforética toma valores más elevados cuanto menor es
la fracción de volumen para cada valor de carga de part́ıcula. Estos com-
portamientos clásicos se muestran en las Figs. 2.5, 2.6, 2.7 y 2.8 (véanse
páginas 34 y 36).

Si tenemos en cuenta el tamaño iónico finito, modelo FIS+L, encon-
tramos diferencias con respecto al caso puntual. Como podemos ver en
la Fig. 2.5, la pequeña disminución que sigue al máximo en la movili-
dad electroforética tiende a desaparecer cuando el tamaño de los iones es
considerable, aśı como el propio máximo. En este caso encontramos dos
reǵımenes distintos para la movilidad electroforética cuando cambiamos la
carga superficial de las part́ıculas: un incremento inicial de la movilidad
con la densidad de carga superficial, similar al visto en el caso de iones pun-
tuales, ahora seguido, para cargas de part́ıcula altas, por otra región con
una tasa de crecimiento algo menor en la movilidad electroforética.

Cuando estudiamos el comportamiento de la movilidad electroforética
al cambiar la fracción de volumen de part́ıcula, observamos que los re-
sultados del modelo FIS+L difieren de los predichos con el modelo PL,
obteniéndose ahora valores más altos en la movilidad conforme nos apro-
ximamos al régimen concentrado, Fig. 2.6. Además, si el tamaño iónico
es suficientemente grande, encontramos un amplio mı́nimo a fracciones de
volumen altas, que no se observa en el caso de iones puntuales.
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La conductividad eléctrica de una suspensión concentrada salt-free con
iones puntuales se comporta clásicamente como sigue: la conductividad au-
menta con la densidad de carga superficial para cualquier valor de fracción de
volumen [67]. Para cargas de part́ıculas elevadas, la conductividad tiende
a alcanzar un “plateau” debido al efecto clásico de condensación de con-
traiones [64]: a partir de un valor cŕıtico de densidad de carga superficial
de part́ıcula no hay influencia apreciable en la conductividad. Una vez que
se ha alcanzado dicho valor, el incremento del número de contraiones me-
diante el aumento de la carga superficial únicamente agranda la región de
condensación y prácticamente no modifica los valores de carga y potencial
fuera de dicha región. También se produce un incremento de la conductivi-
dad con la fracción de volumen, ya que el mayor número de iones móviles
en la doble capa aumenta la conducitividad en mayor grado de lo que la
penaliza el volumen extra no conductor ocupado por las part́ıculas. Es-
tos comportamientos clásicos se muestran en las Figs. 2.12, 2.13 and 2.14
(véanse páginas 44, 45 y 46).

Cuando tenemos en cuenta el tamaño finito de los contraiones (modelo
FIS+L, Figs. 2.12, 2.13 and 2.14) observamos comportamientos similares,
aunque los valores numéricos que toma la conductividad eléctrica son siem-
pre mayores cuando aumentamos el tamaño iónico para cargas de part́ıcula
moderadas y altas en suspensiones concentradas. Para cargas de part́ıcula
y fracciones de volumen bajas, los resultados de ambos modelos son casi
coincidentes.

La modificación de la región de condensación iónica en las proximidades
de la superficie de la part́ıcula debido al tamaño iónico finito produce un
cambio en el flujo convectivo del fluido y en los flujos de los contraiones, Figs.
2.9 y 2.10 (véanse páginas 37 y 38), además de una importante disminución
de la fuerza de retardo electroforético que actúa sobre la part́ıcula cuando
aplicamos un campo eléctrico estático, Tabla 2.2 (véase página 39). En el
caso común de contraiones H+, esto produce un incremento en la movilidad
electroforética de las part́ıculas y en la conductividad de la suspensión en
comparación con el caso puntual. Dicho incremento crece con el tamaño del
ión y con la carga de la part́ıcula.

Suspensiones salt-free: electrocinética ac

La respuesta en frecuencia clásica de una suspensión concentrada salt-free
con contraiones puntuales, modelo PL, es la siguiente: (i) a baja frecuencia,
los procesos de difusión y electromigración tienen suficiente tiempo para
desarrollarse por completo alrededor de la part́ıcula. Normalmente, este he-
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cho lleva a que se genere un momento dipolar eléctrico inducido que tiende
a frenar el movimiento de la part́ıcula. En esta región de frecuencias, la
movilidad dinámica alcanza un “plateau” cuyo valor coincide con el de la
movilidad electroforética para campos eléctricos estáticos. (ii) Conforme
la frecuencia aumenta, encontramos una región de frecuencias donde los
contraiones no pueden seguir las comparativamente rápidas oscilaciones del
campo eléctrico. Aśı, el mencionado momento dipolar disminuye y, conse-
cuentemente, la movilidad dinámica aumenta. Este proceso se conoce como
relajación de Maxwell-Wagner-O’Konski (MWO) y tiene lugar siempre que
el medio y la part́ıcula cargada, rodeada por su doble capa eléctrica, presen-
tan distintas conductividades y permitividades. (iii) Finalmente, la frecuen-
cia puede ser tan alta que la inercia de la part́ıcula y del fluido restrinjan
el movimiento de forma progresiva. Cuando esto ocurre, la movilidad dis-
minuye de forma continua conforme la frecuencia aumenta. Este fenómeno
se conoce como relajación inercial.

Existe otro mecanismo clásico de relajación, la relajación alfa [7], que
está relacionado con el efecto de polarización por concentración, esto es, la
presencia de un gradiente de electrolito neutro alrededor de la part́ıcula.
Como se explica en la Ref. [73], no encontramos ninguna relajación alfa en
suspensiones salt-free ya que únicamente tenemos una especie iónica, los
contraiones añadidos.

La Fig. 2.16 muestra el módulo de la movilidad dinámica escalada y
la Fig. 2.17 las partes real (a) e imaginaria (b) de la permitividad relativa
de una suspensión concentrada salt-free en función de la frecuencia para
φ = 10−2 (véanse páginas 51 y 52). No encontramos ninguna diferencia
entre los resultados de los modelos PL y FIS+L para los “plateaus” de baja
frecuencia en la movilidad y permitividad, Figs. 2.16 y 2.17a, para cualquier
carga de part́ıcula a fracción de volumen baja. Como se discutió en la
Ref. [14] para la movilidad estática y la conductividad, esto se debe a que
en el caso de una suspensión diluida la consideración de efectos de tamaño
iónico finito sólo modifica de forma significativa los flujos contraiónicos en
la inmediata vecindad de la part́ıcula.

La relajación de MWO se asocia t́ıpicamente con el máximo que se
encuentra en la parte imaginaria de la permitividad. Destacamos que para
el caso de una suspensión con baja fracción de volumen, dependiendo del
valor de la carga de la part́ıcula, pueden producirse una o dos relajaciones
de MWO diferenciadas, Fig. 2.17, o análogamente uno o dos máximos en
la movilidad dinámica, Fig. 2.16. Asociamos el primero de ellos, conforme
aumentamos la frecuencia, con la relajación MWO de la parte difusa de la
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doble capa eléctrica y el segundo con la relajación del condensado.

A baja densidad de carga no se produce ningún condensado de con-
traiones en la proximidad de la superficie de la part́ıcula y por tanto no
se observa ningún proceso de relajación MWO del condensado. Cuando
aumentamos la carga de la part́ıcula, casi todos los contraiones que apare-
cen se acumulan en el condensado [64,109], que crece de forma significativa
cuando se tienen en cuenta efectos de tamaño iónico finito [53]. Esto ex-
plica por qué el tamaño iónico no produce ningún efecto considerable en la
relajación MWO de la parte difusa de la doble capa eléctrica y por qué au-
menta considerablemente la relajación MWO del condensado. Apreciamos
también en las Figs. 2.16 y 2.17 que la frecuencia de relajación MWO de la
parte difusa no cambia prácticamente con el tamaño iónico, mientras que
la frecuencia de la relajación MWO del condensado aumenta con el tamaño
de los contraiones, ya que también lo hace el condensado.

En las Figs. 2.18 y 2.19 (véanse páginas 54 y 55) mostramos la respuesta
en frecuencia del módulo de la movilidad dinámica escalada y la parte imagi-
naria de la permitividad relativa de la suspensión para σ = −40 µC/cm2. En
las Figs. 2.16 y 2.17 hemos visto cómo se producen dos relajaciones MWO
cuando aumenta la densidad de carga en condiciones de baja fracción de
volumen. Ahora observamos que las relajaciones MWO del condensado y
de la capa difusa en la Fig. 2.19, o de forma análoga los dos máximos en
movilidad en la Fig. 2.18, tienen a solaparse en frecuencia para suspensiones
concentradas con valores altos de densidad superficial de carga de part́ıcula.

Cuando incluimos el tamaño finito de los iones encontramos cambios
únicamente en la relajación MWO del condensado (incremento del máximo
en movilidad y pequeña disminución de la frecuencia de relajación). Estos
cambios pueden explicarse con el mismo razonamiento usado para las Figs.
2.16 y 2.17: la consideración de contraiones con tamaño finito aumenta sig-
nificativamente el tamaño del condensado situado cerca de la superficie de
la part́ıcula, pero no produce ningún efecto considerable en la capa difusa.
También podemos apreciar la conocida disminución en la movilidad con el
aumento de la fracción de volumen en la Fig. 2.18, debida básicamente
a un mayor apantallamiento de la carga de la part́ıcula [53]: cuando au-
menta la concentración de part́ıculas, disminuye el espacio disponible para
los contraiones dentro de la celda y, por tanto, se aumenta enormemente el
apantallamiento de la carga de la part́ıcula, reduciendo el valor del poten-
cial eléctrico en la superficie y, consecuentemente, de la movilidad electro-
forética.

Las Figs. 2.20 y 2.21 (véanse páginas 56 y 57) presentan el módulo de
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la movilidad dinámica escalada y las partes real (a) e imaginaria (b) de
la permitividad relativa de la suspensión en función de la frecuencia para
distintas cargas de part́ıcula y fracción de volumen φ = 0.5. Además, en las
Figs. 2.22 and 2.23 (véase página 58) se muestran las mismas cantidades
a σ = −40 µC/cm2 y φ = 0.5 fijas para distintos tamaños iónicos. Como
hemos mencionado anteriormente, para este valor elevado de fracción de
volumen, las dos relajaciones MWO solapan en un único pico. Podemos ver
cómo tanto la movilidad dinámica como la permitividad relativa aumentan
cuando consideramos contraiones con tamaño finito en comparación con el
caso PL y también cuando aumentamos la carga de la part́ıcula. Esto es
debido a que un incremento de la densidad de carga superficial o la consi-
deración de iones con tamaño finito lleva a un aumento de la polarización
de carga global en la doble capa eléctrica. Dicho aumento hace que la per-
mitividad tome valores más elevados, Figs. 2.21a y 2.23a, y que aumenten
las alturas de los picos en la parte imaginaria, Figs. 2.21b y 2.23b. Una
explicación similar se aplica al considerable incremento que se aprecia en
el máximo de movilidad, asociado con las relajaciones MWO, Figs. 2.20 y
2.22: la relajación de un momento dipolar inducido más elevado da lugar a
mayores valores de movilidad.

Las Figs. 2.21b and 2.23b también muestran un desplazamiento a mayo-
res frecuencias de la relajación MWO cuando tenemos en cuenta el tamaño
iónico finito. Este desplazamiento es mayor cuanto mayor es el tamaño
de los contraiones. La relajación MWO de la capa difusa es casi indepen-
diente del tamaño iónico, y por tanto, el desplazamiento observado se debe
enteramente a un desplazamiento de la frecuencia de relajación MWO del
condensado.

Podemos concluir que la consideración de efectos de tamaño iónico finito
hace que el proceso de relajación MWO asociado con la capa de conden-
sación de contraiones se vea aumentado para cargas de part́ıcula moderadas
y altas. Este aumento produce un incremento en la movilidad en este rango
de frecuencias. Dicho incremento en movilidad crece con el tamaño iónico
y la carga de la part́ıcula.

Suspensiones salt-free realistas

En un intento por acercarnos a los sistemas experimentales, hemos desa-
rrollado un modelo que incluye efectos de tamaño iónico finito en la doble
capa eléctrica de equilibrio de part́ıculas esféricas en suspensiones concen-
tradas salt-free realistas. Estas suspensiones realistas incluyen a los iones
procedentes de la disociación del agua y a los generados por contaminación
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por CO2 atmosférico, además de los contraiones añadidos liberados por las
part́ıculas a la solución.

En las Figs. 3.1 y 3.2 (véanse páginas 70 y 72) representamos el poten-
cial eléctrico en la superficie de la part́ıcula frente a la fracción de volumen
de part́ıcula para distintas suspensiones salt-free realistas. Los resultados
numéricos muestran que la influencia de la disociación del agua en sus-
pensiones salt-free en medio acuoso, WDC y WDNC, es importante para
fracciones de volumen menores que 10−2. Además, la contaminación at-
mosférica, si las suspensiones están en contacto con el aire, WDACC y
WDACNC, es significativa en la región de φ < 10−1. Vemos que también es
importante distinguir los casos en los que los contraiones añadidos coinci-
den o no con alguna de las especies iónicas que aparecen por la disociación
del agua o por el ácido carbónico. Los resultados también muestran que el
tamaño iónico debe ser tenido en cuenta para cargas de part́ıcula moderadas
y altas a cualquier fracción de volumen, Figs. 3.4, 3.5 y 3.6 (véanse páginas
75, 76 y 77). Este modelo de equilibrio será usado para desarrollar mode-
los de no equilibrio para la respuesta de suspensiones concentradas salt-free
realistas a campos eléctricos incluyendo efectos de tamaño iónico finito.

Para comprobar la validez de los modelos electrocinéticos presentados en
esta tesis, hemos realizado una serie de medidas experimentales preliminares
de la movilidad electroforética estática y dinámica de látexes de poliestireno
sulfonatados altamente cargados en suspensiones concentradas salt-free. En
la Fig. 3.8 (véase página 81) mostramos medidas experimentales junto con
predicciones teóricas de la movilidad dinámica en función de la frecuencia
del campo aplicado para distintas fracciones de volumen. Podemos ver que
existe un buen acuerdo cualitativo entre teoŕıa y experimento, y que dicho
acuerdo mejora en todos los casos cuando consideramos el tamaño iónico
finito. En la Fig. 3.7 (véase página 79) se comparan teoŕıa y experimento
para la movilidad electroforética a distintas fracciones de volumen. En este
caso, para fracciones de volumen bajas, es necesario considerar suspensiones
salt-free realistas si queremos encontrar un acuerdo cualitativo.

Consideramos que seŕıa necesario mejorar estos experimentos realizando
un estudio sistemático con un protocolo establecido. En particular, seŕıa in-
teresante repetir estos experimentos con otros valores de carga y tamaño
de part́ıcula, aśı como con otras especies iónicas, como K+ o Na+, en lu-
gar de con contraiones H+. La realización de medidas de espectroscoṕıa
dieléctrica de las mismas suspensiones también añadiŕıa información útil
sobre la importancia del tamaño iónico finito en la respuesta electrocinética
global.
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[51] J. J. López-Garćıa, C. Grosse, and J. Horno, Langmuir, 2011, 27,
13970–13974.
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